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Abstract

Right from the early days, humans have envisioned robots as machines that can interact with

and manipulate their environment in a “natural" way, just as they do. Imitation learning is

a framework for achieving these goals where the robotic agent learns to imitate an expert

demonstrator. A large portion of the recent research in this field has strived to work towards

building robotic agents that can effortlessly manipulate not only their own complex geometry

but also objects in their environment by relying primarily on expert demonstrations. With the

rapid rise in the capabilities of generative machine learning methods and their recent success

in generating realistic images, videos, and other data modalities, researchers have now started

to explore the intersection of these techniques to generate close-to-natural robotic motion.

The objective of this thesis is to explore the use of generative modelling methods such as

energy-based models/diffusion within the framework of imitation learning. This literature

research specifically focuses on two fundamental methods in the imitation learning literature

– Generative Adversarial Imitation Learning and Imitation from Observation – intending

to understand their theoretical background and practical considerations and review their

shortcomings. The report discusses the benefits of generative modelling in imitation learning

and analyses some issues such as the instability of generative adversarial networks (GANs), non-

smoothness and mode-dropping in GANs, imitation under partially observable demonstrations,

and some challenges of reinforcement learning as a subproblem in imitation learning. The

outcome of this study is a detailed set of open questions in current literature and interesting

ways to tackle some of these challenges via algorithmic changes to the current state-of-the-art.

This will then guide a rigorous thesis on the use of energy-based generative models (like

diffusion) to learn reward distributions within imitation learning.
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1
Introduction

1.1. Motivations, Scope & Research Question
Robots hold immense potential to streamline and simplify human lives across various domains.

From dangerous industrial applications like vehicle assembly to mundane household tasks

such as cleaning and kitchen preparation to critical medical applications like surgical assistance,

robots promise a much safer and more convenient future. However, such a future and the

eventual usefulness of these robots predominantly rely on their ability to interact with and

manipulate our very complex physical world effectively. The robots of the future must transcend

their current dependence on well-defined locomotion spaces and case-specific manipulation

strategies – such as "robot safe" zones and predefined motion priors – to be able to walk in

unstructured spaces and pick up/manipulate several arbitrary objects. Achieving this requires

learning the same motor and dexterous manipulation skills that we humans have perfected

over our lifespan. What if robots could learn these skills by simply imitating humans from

demonstration?

Imitation learning is a field of machine learning that aims to learn control policies for robotic

agents by imitating demonstrations given by an expert (humans in most cases). The imitation

learning problem can be boiled down to interpreting these demonstrations to recover scalar

reward signals that can then be optimised to learn a control policy. A reward signal provides

the robot with the correct incentive to do a certain task. In imitation learning, this reward

signal motivates the robot to closely follow the actions of the expert. While a host of methods

for recovering reward functions have already been proposed in the imitation learning literature

[1], recent advances in the field leverage generative machine learning techniques for this

task. One such recently proposed framework is Generative Adversarial Imitation Learning

(GAIL) [2]. GAIL uses an adversarial training procedure that learns reward functions by

simultaneously training two function approximators in a min-max game. GAIL has been

a very influential algorithm and has led to several other methods that attempt to weave

1



1.1. Motivations, Scope & Research Question 2

generative adversarial models into imitation learning [3]–[5]. However, a critical analysis of the

optimisation procedures of GAIL, its required data modalities, and empirical characteristics

highlights shortcomings that, if systematically addressed, could lead to a new, improved

algorithm. The primary shortcomings of GAIL-like methods are summarised in the following

paragraphs and are analysed critically in the remainder of this report.

Issues in GAIL-like methods arise from the generative adversarial optimisation procedure that

they use to learn reward functions. These objectives are famously known to cause unstable

training. The functions learnt using these objectives have issues accurately mapping to multi-

modal distributions, are not smooth (continuously differentiable) in all parts of the sample

space, and are often inadmissible to the process of conditioning. These shortcomings mean that

GAIL-like methods often take longer to learn and fluctuate a lot in terms of their performance

and the way they solve the task. Further, they often only effectively learn one way of solving

tasks. For instance, when learning to pick up an object, such an algorithm might frequently

switch between reaching from the left and reaching from the right, while ultimately only

converging on one of those behaviours. Additionally, because of the difficulty of conditioning

adversarial models, the policies learnt by these algorithms are also theoretically more restricted.

From the object-picking analogy, other generative techniques such as energy-based models

might naturally learn different policies to pick an object depending on the type of the object,

while adversarial learning algorithms like GAIL are difficult to adapt to different conditions.

An added challenge in imitation learning – made even more pertinent by the realities of

imitation learning in real-robot settings – is to learn to imitate experts in the presence of

partially observable demonstrations (only containing trajectories of states and missing other

information like the actions executed by the expert). The original formulation of GAIL also

does not operate under partially observable demonstrations, rendering it further infeasible for

real-world robotics tasks where data availability is often restricted.

Empirically speaking, careful hyperparameter tuning and clever architectural changes have

been shown to result in good quality results from generative adversarial objectives – as is also

evident from the excellent empirical results of GAIL. From a scientific perspective, although

adversarial techniques do seem to work in practice, it is still difficult to attribute their excellent

performance solely to algorithmic ingenuity. [6] present a large-scale study of adversarial

architectures that showcases that with enough hyperparameter optimisation and random

training restarts, most adversarial architectures tend to reach similar performance levels. Their

study underscores the inherent unpredictability of GANs and raises questions about reliability

and statistical significance in algorithms that use GAN-like objectives.

It seems (to me) that the recent outlook in the machine learning community is to rely more

heavily on empirical results backed by training with very large computational budgets than

on theoretical argumentation or sample-efficient algorithmic ingenuity ([7] show a graph of

the exponential rise in arXiv papers in AI/ML). Relying on large computational budgets to

demonstrate performance improvements also has environmental and ethical downsides and

might lead to undesirable effects in the machine learning community. First, large machine
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learning models that require weeks of training and subsequent hyperparameter optimisation,

also require a significant amount of energy [8], [9]. This raises questions about the sustainability

of machine learning and points towards the potential downsides of achieving performance

gains through excessive training (rather than algorithmic ingenuity). The further deployment of

such large models in everyday products [10]–[12] has also been critically analysed [9], [13]–[15]

and the environmental impact (including carbon footprint and other energy costs) is something

that must be considered as a genuine downside of machine learning. Secondly, the recent

preference of machine learning scholarship towards larger models and bigger computational

budgets also raises the barrier to entry into the community. If conferences, journals, and

industries tend to prefer deeper-architecture research, does that not imply a dismissal of those

ideas that are not backed by access to expensive computes? In a broader sense, this might also

lead to the stagnation of the field and missing out on influential ideas. Lastly, deep architecture

research inevitably comes with the burden of requiring very large datasets. Products like Dall-E

and Chat-GPT [10], [12] are trained on several terabytes of data that are often just scraped from

text, images, and video material on the internet. Aside from the ethical and legal repercussions

of such data scraping, these datasets also require several hours of manual labour for filtering,

cleaning, and post-processing. Being closed-source, it is also very hard to determine the biases

in these datasets – biases that naturally also transfer over to the machine learning models

trained on this data. Works like [16]–[18] analyse the various ethical considerations of such

technologies from various perspectives. Their work discusses several facets of the problem like

the utility of the technology vs. its human cost, the legal vs. moral considerations of copyright

protection, and the idea that the ethics of a technology could ultimately be user-defined. While

the conversation around the ethics of artificial intelligence is vast and nuanced, it is my opinion

that machine learning research should at least strive to be transparent, openly accessible, and

receptive to the idea that such technologies are prone to biases and errors.

Although incapable of making the larger, systemic changes that might be necessary to steer the

community away from such pitfalls, this literature study proposes to address issues such as

instability, non-smoothness, restricted modality, inoperability in partial observability, and the

potential need for large computational budgets that exist in the GAIL-like algorithms mentioned

above. This study mainly focuses on (i) exploring better generative model alternatives like

energy-based models and diffusion and (ii) focusing on the problem of imitation under partial

observability. The goals of this literature study are to

1. Review the existing literature and background work at the intersection of imitation learn-

ing and generative modelling. Specifically focus on studying the benefits and drawbacks

of Generative Adversarial Imitation Learning and Imitation from Observation, and

other recent methods that are similar to these (AMP, Diffusion Policy etc.).

2. Study GANs and similar generative methods commonly used in the imitation learning

literature. Also, review energy-based models and particularly focus on diffusion. Com-

pare their merit via empirical results, theoretical analysis, and suitability for the data

modalities that are common in robotic manipulation tasks.
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3. Explore potential changes to the identified methods that might promise to improve their

performance.

With the scope identified above, the following research questions will be studied

How can generative modelling techniques like energy-based models/diffusion improve imitation learning
frameworks like Generative Adversarial Imitation Learning (GAIL) from the perspective of learning
contact-rich robotic tasks in a fast, repeatable, and versatile manner?

What changes might be necessary to improve the practical applicability of GAIL-like algorithms, especially
for imitation under partial observability? How is the ability to learn in partially observable situations
relevant to contact-rich tasks and how can the above-mentioned generative models benefit this cause?

1.2. Literature Review Strategy & Report Outline
As mentioned in the previous section, this literature research is grounded around two

fundamental fields in the imitation learning literature – Generative Adversarial Imitation

Learning (GAIL) and Imitation from Observation (IfO). The strategy adopted for this literature

research mainly focuses on reviewing books, research papers, and technical review articles.

The citations from a few fundamental papers, the papers that in turn cite GAIL and IfO, articles

recommended by advisors, and online search tools like Google Scholar were the primary

sources of information. A broad search of “recent work in generative imitation learning"

via sources like Google Scholar, Google Search, academic tools like Scopus/Web-of-Science,

and the network of authors that collaborate with researchers in imitation learning, was also

conducted to avoid excluding potentially impactful recent work from this literature review. The

review process led to insights on the following points that also form the outline of the report.

• Section 1.3 - The fundamental methods/concepts that are used within or act as a

theoretical background to imitation learning

• The background work around GAIL and IfO

– Section 2.2 - The general field of generative machine learning methods, and a specific

focus on, Generative Adversarial Networks (GANs)

– Section 2.2.1 - Studying the challenges of GANs and their pertinence to imitation

learning

– Section 2.3 - Other generative methods like energy-based models, that could

potentially be better alternatives

• Section 3.1 - The field of imitation learning as a whole and the main sub-categories of

this field of study

– Section 3.2 - The challenges in imitation learning

• Chapter 4 - Opportunities for the use of generative modelling in imitation learning and

works in recent literature surrounding GAIL and the problem of IfO
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• Chapter 5 - A broader discussion on the findings of this literature review, and recom-

mendations/new opportunities for the field that will be studied in further depth via a

thesis

1.3. Theoretical Background
Section 1.1 briefly introduces imitation learning as a procedure that first recovers a reward

function from a set of expert demonstrations and then subsequently optimises that reward

function to take the appropriate actions. GAIL [2] and similar adversarial algorithms recover

this reward function using generative machine learning techniques. In doing so, GAIL internally

minimises the dissimilarity between the actions taken by the expert and the imitator. It then

uses the similarity between the imitator’s and the expert’s actions as an indication of the current

performance of the imitator and uses this to incentivise the imitator to iteratively improve its

actions via optimisation. Even such a brief description of imitation learning and adversarial

methods raises several questions about their specifics and mathematical formalisms. For

instance:

1. How is the similarity (or dissimilarity) between sets of trajectories defined?

2. What is a reward function? What are actions? What provides the agent with the

reward and how is the interaction between the agent and its surroundings defined

mathematically?

3. What does it mean to improve an agent’s actions and optimise the reward function?

4. How do these optimisation techniques work and what are some popular examples from

recent literature?

A detailed and critical discussion of techniques in imitation learning and the answer to the

above-mentioned questions require an understanding of some topics in statistical machine

learning. The current section lays down preliminaries and mathematical formalisms that might

benefit the reader to follow the rest of this report. Section 1.3.1 discusses the measures of

dissimilarity that are often used in generative modelling techniques. Section 1.3.2 lays down

the mathematical framework under which imitation learning is defined. Section 1.3.3 discusses

a procedure for sequential decision-making and optimising an agent’s actions given a reward

signal. This procedure is called reinforcement learning and is used within all imitation learning

algorithms discussed in this report. Section 1.3.3 then discusses some popular reinforcement

learning techniques that are seen in state-of-the-art imitation learning algorithms. Finally,

section 1.3.4 goes into some gradient-free optimisation techniques that could be simpler

alternatives to reinforcement learning. This report follows the notation adopted in [19] for

concepts in reinforcement learning. Variables and other quantities are highlighted in the text

as and when necessary.
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1.3.1. Cross-Entropy, KL Divergence & Jensen-Shannon Divergence
Optimisation in the context of function approximators usually involves matching the output

of the function approximator with a known ground truth value. Most machine learning

techniques use function approximators that return probability distributions. A natural way to

optimise such functions is to then match the returned probability distribution with a known

one. Measures of divergence are functions that in turn specify the similarity between two

probability distributions.

The cross-entropy 𝐻(𝑝 | |𝑞) between two distributions 𝑝(𝑥) and 𝑞(𝑥) is a measure that defines

the distance as the average number of data samples needed to correctly identify the source of

the data given that the source is ambiguous prior to the sampling process. The log-likelihood

of a distribution is a similar measure that also defines the likelihood of the source of the data

given samples drawn from it. However, the log-likelihood is usually used in isolation and not

in the context of two distributions. In practice, these two differ minutely in their formulation

and are used almost interchangeably depending on the problem definition.

The Kullback-Leibler (KL) Divergence [20] is another distance measure that is a widely used

metric in machine learning research and is often a part of optimisation objectives. It can be shown

that optimising w.r.t the KL divergence is effectively the same as optimising the cross-entropy.

It is important to note that the KL divergence is not symmetric, ie 𝐷𝐾𝐿(𝑝 | |𝑞) ≠ 𝐷𝐾𝐿(𝑞 | |𝑝). The

Jensen-Shannon (JS) Divergence [21] is a symmetric version of the KL divergence that measures

the divergence of both distributions from a new averaged version of both.

𝐻(𝑝 | |𝑞) = E𝑥∼𝑝(𝑥)[log 𝑞(𝑥)]
𝐿𝑜𝑔 − 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑝) = E𝑥∼𝑝(𝑥)[log 𝑝(𝑥)]

𝐷𝐾𝐿(𝑝 | |𝑞) = E𝑥∼𝑝(𝑥)[log

𝑝(𝑥)
𝑞(𝑥) ]

𝐷𝐽𝑆(𝑝 | |𝑞) =
1

2

𝐾𝐿(𝑝 | |𝐴) + 1

2

𝐾𝐿(𝑞 | |𝐴) where 𝐴 =
𝑝(𝑥) + 𝑞(𝑥)

2

1.3.2. Markov Decision Process
Many of the machine learning methods discussed in this report – including imitation learning

and by extension, reinforcement learning – involve a robotic agent sequentially making decisions

to change its current state and interact with its surroundings. The agent’s decision-making

and the interaction between the agent and its surroundings are defined by the mathematical

framework of a Markov Decision Process (MDP). Loosely speaking, an MDP is a framework in

which a rational agent [22] takes actions to interact with its environment and subsequently obtains

a numeric reward signal while also influencing the state of the environment. The agent’s goal is

to maximise its long-term reward. Some problems choose to define a cost instead of the reward.
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The cost provides the same motivations as a reward but in a negative direction. It is hence

minimised whereas rewards as maximised.

Formally, a Markov Decision Process is a framework for formulating problems involving

sequential decision-making [19], [22]. An MDP (finite) is a [22] discrete time model (the

subscript 𝑡 is used to indicate the time step), formally defined as a 5-tuple < 𝑆, 𝐴, 𝑇, 𝑅, 𝛾 >

where

1. 𝑆 is a set of states

2. 𝐴 is a set of actions that the agent can take

3. 𝑇(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) is a function of the agent’s current state (𝑠𝑡 ∈ 𝑆) and executed action (𝑎𝑡 ∈ 𝐴),

defining the transition dynamics of the environment that take the agent from the current

to the next state (𝑠𝑡+1 ∈ 𝑆)

4. 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) is a reward function that maps the agent’s current state, executed action,

and next state to a scalar reward signal

5. 𝛾 ∈ (0, 1], called the discount factor, determines the agent’s outlook towards the reward

signal (more on this below)

6. In some definitions an additional initial-state distribution𝜌(𝑠0) that defines the distribution

of the initial state 𝑠0 ∈ 𝑆 is also included. However, this report omits it and mentions it

whenever necessary

7. In problems where the state space is not fully observable, an additional observation set 𝑂

and an observation model 𝑂(𝑜𝑡+1 |𝑜𝑡 , 𝑎𝑡) is also included in the formalism (in this case, the

framework is formally called a Partially Observable Markov Decision Process (POMDP)).

When defining a Markov Decision Process, we make the Markov assumption. In problems

involving sequential decision-making, the state of the environment is assumed to retain all

relevant information from all past actions and state transitions. The Markov assumption (or

property) captures the same. It states that an agent’s future state and the reward signal it

receives are independent of its history of state transitions and actions, given its current state,

action taken (and the next state in the case of the reward). The discount factor 𝛾 determines

the agent’s preference for immediate or delayed rewards. Unlike other hyperparameters such

as the learning rate, is defined as an integral part of the MDP because it influences the optimal

solution to the problem. i.e. varying the value of 𝛾 can change the optimal solution to the MDP.

In general “solving" an MDP often boils down to computing a policy, 𝜋(𝑎 |𝑠). A policy is a

mapping from the set of states 𝑆 to the set of actions 𝐴. This essentially tells the agent which

action to take in its current state for any state 𝑠 ∈ 𝑆. The agent’s goal is to maximise its expected

discounted long-term reward (also called the return, 𝐺𝑡). In an infinite-horizon setting,
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AGENT

ENVIRONMENT

action
atreward

rt+1

next state
st+1

init. state
s0

Figure 1.1: The agent-environment interaction loop

𝐺𝑡 =

∞∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1

𝜋∗ = arg max

𝜋
E𝑠0 ,𝑎0

[𝐺0]

where 𝑠0 ∼ 𝜌(𝑠0); 𝑎0 ∼ 𝜋 (𝜌 is the initial state distribution)

1.3.3. Reinforcement Learning - Background & Popular Methods
Given that the agent’s current situation is defined by its state, and that it can take actions to

interact with its surroundings to both change its state and simultaneously obtain a reward,

how then does the agent learn to take the right actions so as to maximise the obtained reward?

Reinforcement learning is one such procedure to achieve this.

Reinforcement learning is a paradigm of learning algorithms that attempt to learn an optimal

policy through trial and error by repeated interaction with the environment. The agent’s

environment can be thought of as the “thing" that tells the agent its current state and the effects

of its actions. It is “everything other than the agent" in a learning setting. For example, in a

video game such as space-invaders, the environment is the actual video game that accepts

the agent’s actions, updates the positions of non-player characters (NPCs) and gives back the

score (which could be thought of as the reward). In multi-agent games such as chess, the

environment is a combination of both the chess board (along with the game logic) and the

opponent player. [19] also provide examples from nature where they view animals like bees as

agents while their cognitive chemistry can be considered the environment that gives them a

reward signal when taking desirable actions like collecting nectar. Figure 1.1 shows a schematic

of the agent-environment interaction. As described in section 1.3.2, the goal of the learning

algorithm is to maximise the expected discounted return.

Model Based & Model Free Methods
A common theme across most sequential decision-making methods discussed in this report

is their dependence on the “model" of the dynamics of the system. A learning algorithm

https://www.gymlibrary.dev/environments/atari/complete_list/
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is considered model-free if it does not assume knowledge of or try to recover the transition

dynamics 𝑇(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) of the system [19]. Conversely, it is considered model-based if the

problem-designer either provides this information or the algorithm attempts to learn it via

interaction with its environment. Model-free methods have the benefit of being easier to apply

on systems where actuation and low-level control are pre-solved problems for any motion

plan returned by the algorithm. This is usually the case for fully actuated robots or systems

where low-level actuation is not a hurdle. On the other hand, model-based methods are

more applicable in cases where the output of the algorithm must comply with the complex

dynamics and actuation constraints of the system. As a result of this, model-based algorithms

are generally more data-efficient than their model-free counterparts. However, they also suffer

from poor performance when the underlying dynamics are far too complex to learn from data.

On the other hand, model-free methods are simpler as they do not rely on any prior knowledge

about the system. They are also more general-purpose and less computationally expensive [1].

Value Based & Policy Search Methods
Reinforcement learning algorithms come in a variety of flavours. They can be roughly

categorised as either those algorithms that assign some sort of value to states and actions (and

subsequently change their policy to encounter high-value states/actions more frequently) or

as those that directly search in the space of policies for a policy that gives a high expected

discounted return.

The state value function 𝑣𝜋(𝑠) is a function of the agent’s state 𝑠 ∈ 𝑆 that tells it how “good" it

is to be in this state. It is defined as the expected discounted return starting from state 𝑠 and

following policy 𝜋. The action value function 𝑞𝜋(𝑠, 𝑎) tells the agent how “good" it is to execute

a certain action in a certain state and then following policy 𝜋 from there onwards [19]. It can be

shown mathematically that the state value function is just the expected action value given a

policy.

𝑣𝜋(𝑠) = E𝜋[𝐺𝑡 |𝑠𝑡 = 𝑠]
𝑞𝜋(𝑠, 𝑎) = E𝜋[𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

𝑣𝜋(𝑠) =
∑
𝑎

𝜋(𝑎 |𝑠) ∗ 𝑞𝜋(𝑠, 𝑎)

Value function based methods such as value iteration, Q-learning, SARSA, DQN [19], [23] etc.

all work with the general procedure of approximating the value function of a policy through

repeated interaction with the environment and then updating the policy to pick high value

states/actions more frequently.

The second class of reinforcement learning methods, called policy search methods, uses a

parameterised representation of the policy 𝜋𝜃 and searches in the parameter space instead

of iteratively approximating optimal value functions and then updating the policy. In these
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algorithms, the policy is evaluated using a performance measure 𝐽(𝜃). Policy search methods

are generally more robust in cases of partial observability (section 3.2) while also easily allowing

for continuous state and action spaces. The general procedure used in such methods is to first

start with some random initial policy with parameters 𝜃, sample trajectories with this policy

in the environment to obtain the performance measure, and then update the parameters to

maximise 𝐽(𝜃).

Popular RL Algorithms - Actor-Critic, TRPO, PPO
This section explains some popular policy search RL algorithms from recent literature (called

policy gradient algorithms) that are often used to learn control policies within the imitation

learning (section 3.1) framework. Policy gradient algorithms operate under the conforms

defined by the policy gradient theorem [24]. The basic idea of this theorem is that

1. Assuming that all episodes start from a single start state 𝑠0 from which every action leads

to a state sampled from a uniform distribution 𝜌(𝑠1)

2. Under the specific definition of the performance measure 𝐽(𝜃) as the value of this start

state 𝑣𝜋𝜃 (𝑠0)

3. It can be shown that the gradient of the performance measure is proportional to the
gradient of the policy

∇𝜃𝐽(𝜃) ∝
∑
𝑠

𝜌(𝑠)
∑
𝑎

𝑞𝜋(𝑠, 𝑎)∇𝜃𝜋𝜃(𝑎 |𝑠)

While sounding obscure at first, the policy gradient theorem simply implies that – under

assumptions that are perfectly reasonable – one can compute the gradient of the performance

measure by computing the gradient of the policy. The gradient of the performance measure

tells us how to change the policy parameters 𝜃 to get the steepest improvement in performance.

Under this theorem, this gradient can now be defined in a form that is suitable for computation
by experience (given an approximate action value 𝑞𝜋(𝑠, 𝑎)). The very first policy gradient

algorithms [25] compute this gradient as an expectation over action values sampled during the

agent-environment interaction.

The stability of policy gradient methods can be improved by modifying this expectation to

compare the action values to a baseline 𝑏. The idea of the baseline is to reduce variance in

learning by providing an indication of the relative goodness of the action value. The baseline

could be something like the average action value and 𝑞(𝑠, 𝑎)−𝑏 indicates just how much “better"

the current action is compared to the average. Actor-critic (AC) methods [19] use an evolving

baseline called a critic that is formulated as an approximation of the state value. 𝑞(𝑠, 𝑎) − 𝑣(𝑠)
then tells us the advantage of picking action 𝑎 in state 𝑠 when compared to the baseline value of

the state. AC methods use learnt functions for both the policy (the actor) and the critic and

update these at every iteration of training.

Trust Region Policy Optimisation (TRPO) [26] and Proximal Policy Optimisation (PPO) [27]



1.3. Theoretical Background 11

are two more very popular policy gradient algorithms that are a standard choice for learning

control policies in continuous action spaces. A significant flaw in the policy gradient procedure

explained above is that the policy parameters are updated by evaluating the performance of

the policy by sampling trajectories generated by the very same policy. This means that the

optimisation target (𝐽(𝜃)) is itself a result of the optimisation parameters (𝜃). If the policy

parameters are updated recklessly, this can change the policy enough to lead to arbitrarily

inconsistent changes in performance – i.e. changes in the parameter space are not consistent

with changes in policy space. TRPO uses a procedure that limits the change in the policy

between consecutive updates and ensures that updates strive towards a forward (monotonic)

progress in performance. This is achieved by updating parameters within the confines of a

“trust region", defining a “surrogate" advantage that ensures that the updated policy performs

better, and by using the KL divergence between the policies before and after the update to

ensure that there are no drastic policy changes. PPO is a first-order simplification of the TRPO

objective – using adaptive KL penalties and clipping – that drops some of the guarantees of

TRPO for an improvement in computational simplicity and sample efficiency. Under some

considerations, PPO can be shown to be analogous to actor-critic methods in continuous spaces.

Goal-Conditioned RL
Goal-conditioned reinforcement learning is a slightly modified version of the RL problem

where the agent interacts with the environment to fulfil a goal from a set of, goals 𝑔 ∈ 𝐺 and

𝑔 ∼ 𝑝(𝑔) where 𝑝(𝑔) is a distribution of goals. The policy that the agent learns 𝜋(𝑎 |𝑠, 𝑔), the

rewards it receives 𝑟(𝑠, 𝑎, 𝑠′, 𝑔), and subsequently the optimisation target E𝑝(𝑔)E𝜋(.|𝑠,𝑔)[𝑟𝑒𝑡𝑢𝑟𝑛],
are all in the context of this goal and are distributed conditionally to 𝑔. This minor change in

formulation enables the agent to take its decisions based on the goal. However, the utility of

goal-conditioned RL is quite reliant on the larger setting of its use as it can easily be shown

that the standard RL problem is also a goal-conditioned problem with just one goal.

1.3.4. Gradient Free Methods - CEM & CMA
Having discussed a rather complex procedure to optimise the rewards given by the environment

(reinforcement learning), one might wonder whether there are easier ways to take actions to

maximise rewards that do not involve neural networks or learning policies. Cross Entropy

Method (CEM) [28], [29] and Covariance Matrix Adaptation (CMA) [30] are two such rather

simple, but surprisingly effective optimisation algorithms. These are both evolutionary

strategies that treat the optimisation objective as a black-box function and evolve a population

of solutions to incrementally maximise the cumulative return from this function. CEM works

by assuming that the black-box function is Gaussian (or a mixture of Gaussians). It hence

learns the mean and covariance of a Gaussian distribution from which solutions (actions) are

sampled. These parameters as then iteratively updated towards solutions that maximise the

objective function. CMA employs a similar strategy of sampling, performance evaluation,

and section/recombination, however uses a clever adaptation procedure (to balance learning

speed and sample diversity) to update the covariance matrix of the Gaussian distribution.
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These algorithms perform quite well in some reinforcement learning tasks and sometimes

also outperform gradient-based methods [31]–[33]. They are hence appropriate baselines for

comparison against any newly proposed algorithm.



2
Generative Machine Learning

A generative model can be loosely defined as a learnt function that generates new (previously

unseen) data samples. Typically, such a function is learnt in an unsupervised manner by

using machine learning techniques that take in unlabelled data samples as input. For example,

[10], [34]–[36] present generative models capable of generating images of human faces, or

handwritten digits, [37] present models that generate audio samples and [38], [39] present

video-generation models.

The underlying idea in almost all generative models is to think of the data samples in the

dataset, {𝑥1 , 𝑥2 , .., 𝑥𝑁 } to have come from some unknown probability distribution 𝑝𝑑𝑎𝑡𝑎(𝑥).
The goal of generative modelling is to learn a probability distribution 𝑝𝜃(𝑥) parameterised

by parameters 𝜃 that very closely resembles the original data distribution. Some generative

modelling techniques explicitly learn the distribution while others learn it implicitly by learning

a model of the procedure to sample from this distribution. Section 2.1 provides an overview of

these categories and introduces some popular generative modelling methods. The remainder

of this chapter then focuses on two such methods – generative adversarial networks (section 2.2)

and energy-based models (section 2.3) – that are the most relevant to the discussions that follow

in upcoming chapters.

2.1. Likelihood-Based & Implicit Generative Models
A likelihood-based model is one that attempts to explicitly learn the data distribution by

updating its parameters to maximise the log-likelihood of the sample having come from the

learnt distribution. Popular generative models in this category are variational autoencoders

(VAEs) [36], normalising flow models [40], energy-based models [41], [42], and autoregressors

[43].

Since the data distribution can be arbitrarily complex, it is not always guaranteed that the

13
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Figure 2.1: Top: an illustration of the training process of a variational autoencoder. Bottom: an illustration of the

transformation of the learnt distribution in normalising flow models [44], [45]

process of sampling from it would be analytically tractable. Models that attempt to learn explicit

representations of the data distribution often have to either make architectural simplifications

that allow tractable sampling or optimise surrogate objectives that deviate from the maximum

log-likelihood. VAEs work by learning an encoder-decoder couple. The encoder maps the

input data points to a latent space from which another learnt layer then generates estimates

for mean and variance, making the assumption that samples in the data distribution can be

mapped to a set of Gaussian distributions with arbitrary parameters. The decoder then maps

this mean and variance vector to a higher dimensional space and returns the generated sample.

Training is facilitated by matching the similarity of the generated sample with the ground truth.

Once trained, the encoder is discarded and the decoder is used to directly generate samples

by passing in arbitrary values of mean and variance. Flow-based models use the concept of

normalising flow. Here, the idea is to directly learn an explicit representation of the data

distribution by first starting from a simpler distribution and then applying a series of invertible

transformation functions that gradually convert it into a complex distribution. The resulting

transformed function is analytically computable and allows for direct sampling. Figure 2.1 [44],

[45] shows an illustration of the VAE and normalising flow model training procedures.

An implicit generative model on the other hand directly learns the procedure to sample from

the learnt distribution, thereby not necessitating analytical tractability. Examples of popular

implicit models are the generative adversarial network (GAN) [35] and the denoising diffusion

probabilistic model (DDPM) [34]. GANs learn to generate samples by learning a mapping

from a latent space to the sample space. While quite similar to VAEs in an architectural

sense, GANs differ as they do not assume that the latent space represents parameters for a

Gaussian distribution. Like normalising flow models, diffusion models also learn to convert
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Figure 2.2: An illustration of the training procedure of GANs (top) and diffusion models (bottom) [46]

simple, tractable distributions into more complex ones. However, instead of computing explicit

functions for the complex distribution, they learn an iterative denoising process that directly

converts samples from one distribution to another. Figure 2.2 [46] illustrates the training

process of both these models. Section 2.2 and section 2.3 discuss these two generative models

in further detail and compare their characteristics from a robotics viewpoint.

2.2. A Deeper Look Into GANs
A generative adversarial network (GAN) [35] is an implicit generative model that uses a learnt

generator function 𝑔𝜃𝐺 (𝑧) to transform a vector in some latent space 𝑧 ∈ 𝑍 to a data sample 𝑥 [47].

The generator function here is described by a neural network parameterised by parameters 𝜃𝐺.

GANs use an interesting training procedure inspired by game theoretic approaches, where the

generator network “competes" with an adversary who attempts to spot whether the sample is

artificially generated or truly from the data distribution. The adversary, called the discriminator,
𝑑𝜃𝐷 (𝑥) takes in the generated sample 𝑥 and returns a probability value describing the likelihood

of that sample having come from the learnt distribution.

Learning in GANs is facilitated by formulating a zero-sum game where each network aims to

maximise its own payoff that is defined by a function 𝑣(𝜃𝐺 , 𝜃𝐷). The payoff is positive for one

network while it is negative for another (typically the generator). The default choice for the

payoff is

𝑣(𝜃𝐺 , 𝜃𝐷) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 [log(𝑑(𝑥))] + E𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙 [log(1 − 𝑑(𝑥))]

where x is the true data sample or a sample generated by the generator. In the ideal scenario, at

convergence

𝑔∗ = arg min

𝑔
max

𝑑
𝑣(𝑔, 𝑑)

where 𝑔∗ is the optimal generator function. The optimal generator function ideally generates
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samples that are indistinguishable from the data distribution and the discriminator returns

an output that is approximately 0.5. GANs can be theoretically shown to have convergence

guarantees assuming that the payoff is convex in the generator’s parameters. Unfortunately, in

practice, this is rarely the case. GANs are famously known for being difficult to train, requiring

a very careful selection of hyperparameters. Section 2.2.1 discusses some of these issues in

detail and presents challenges that could arise from the use of GAN-like optimisation objectives

in imitation learning.

2.2.1. Instability In GANs
[35], [48]–[50] present a detailed analysis of some of the issues related to GANs. As seen in

section 2.2, training is formulated as the maximisation of the log-likelihood (or equivalently,

minimisation of the Kullback-Leibler divergence) between the original data distribution 𝑝𝑑𝑎𝑡𝑎

and the learnt distribution 𝑝𝜃. The KL divergence has the desirable property of not requiring

knowledge of the distributions (only samples are sufficient) and being at its minimum when

𝑝𝑑𝑎𝑡𝑎 = 𝑝𝜃. However, 𝐾𝐿(𝑃 | |𝑄) ≠ 𝐾𝐿(𝑄 | |𝑃)), i.e. the KL divergence is not symmetric. This

leads to two forms of discrepancy.

If 𝑝𝑑𝑎𝑡𝑎(𝑥) > 𝑝𝜃(𝑥) – the probability of the sample having come from the data distribution

is higher than the probability of it having come from the learnt distribution – it leads to a

phenomenon known as mode dropping (or mode collapse) where the learnt distribution fails to

completely capture the data distribution. If 𝑝𝑑𝑎𝑡𝑎(𝑥) < 𝑝𝜃(𝑥), it simply leads to undesirable

results where the generator returns samples that do not resemble the desired distribution.

Both these phenomena could reverse depending on the choice of 𝐾𝐿(𝑝𝑑𝑎𝑡𝑎 | |𝑝𝜃) or 𝐾𝐿(𝑝𝜃 | |𝑝𝑑𝑎𝑡𝑎).
This leads to additional ambiguity. In the work of [35], the model can be shown to minimise the

Jensen-Shannon divergence (section 1.3.1), which can be seen as a “symmetric middle ground"

to either formulation of the KL divergence. Minimising this distance measure has shown to

greatly improve performance in terms of stability when compared to the GAN formulation

that minimises just the KL divergence. However, the distance measure being minimised is not

the only source of instability.

Mode dropping also happens as a result of the zero-sum nature of the GAN training procedure.

The generator attempts to not explicitly learn the data distribution, but instead learn it under

the assumption that the discriminator points it towards this data distribution with the right

motivation. In reality, the generator is simply trying to minimise the discriminator’s outputs.

This often leads to the generator simply learning a distribution that the discriminator can

consistently predict as being quite similar to the data distribution. Since the discriminator does

not bother about diversity in the samples passed to it, the generator can get away with simply

learning one of the many modes in the data distribution. Figure 2.3 shows experiments from

[51] that aim to solve the issue of mode collapse by modifying the generator’s objective. This

however could come with the cost of other changes to the performance of GANs. Generating

samples with high diversity is a continuing challenge in the GAN community and is an active

research topic.
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Figure 2.3: A demonstration of mode dropping [51]. The model can be seen to rotate through the multiple modes

in the target distribution. However, without architectural and training parameter-related changes, the model

inherently only learns a single mode

Figure 2.4: Discriminator error w.r.t training timesteps with a fixed generator recovered from a separate model

trained up to a certain number of epochs. It can be seen that the discriminator error quickly drops to zero leading

to its gradient dropping to zero, leading to worse updates to the generator [50]

Furthermore, without very fine-tuned hyperparameters, as the discriminator gradually receives

better updates, the updates to the generator tend to get consistently worse. This is also an

inherent feature of zero-sum games where, if one player learns a strategy that consistently

overpowers the other, learning tends to come to a halt. Imagine a scenario at the early stage of

training where the two networks have only begun to start learning. In such cases, the generator

is often quite poor and generates samples that are not very similar to the data distribution. The

discriminator then quickly learns to differentiate the real samples from the fake ones, causing

𝑑(𝑔(𝑧)) ≈ 0. When this happens, log(1 − 𝑑(𝑔(𝑧))) ≈ 0 and ∇𝜃𝐺 log(1 − 𝑑(𝑔(𝑧))) ≈ 0. This means

that the gradient of the objective function – the signal that tells the generator how to improve –

gets weaker as the discriminator does better. This cascades as training continues and leads to

the generator not being able to learn the data distribution. Figure 2.4 shows experiments from

[50] that demonstrate the same.

Limitations Of Adversarial Objectives In Imitation Learning
The imitation learning algorithms discussed in chapter 4 use GAN-like adversarial objectives

to learn a discriminator that is in turn used as a cost function for subsequent optimisation

with reinforcement learning. The idea here is to learn a discriminator that can differentiate

between the motions produced by the agent and the motions in the expert demonstration

dataset and then iteratively update the agent’s policy to minimise this discriminator-based

cost. While this methodology seems technically sound and has shown good empirical results,

the shortcomings of GAN-like optimisation objectives also tend to cause problems with such

adversarial imitation learning techniques.
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From the point of view of suitability as a cost function, the discriminator suffers from the issue

of non-smoothness in the sample space. Smoothness refers to the ability to be continuously

differentiable, thereby allowing the computation of gradients with respect to the parameters

of a function approximator (trying to minimise costs). It is quite challenging to optimise

non-smooth objectives with gradient-based optimisation techniques since the gradient – the

signal that indicates the direction of the steepest ascent/descent – is often very close to zero

in non-smooth regions of the sample space. Since the discriminator is simply optimised to

maximise the divergence between the learnt and data distributions, it is not guaranteed to be

smooth in the sample space. In contrast, generative models discussed in section 2.3, model the

learnt probability distributions via smooth functions that are indeed continuously differentiable

and capable of providing informative gradients. Figure 2.5 shows an illustration of this issue.

Issues like mode-dropping also arise when using adversarial objectives in imitation learning.

Instead of limiting the diversity in the generated samples, mode-dropping in adversarial

imitation learning algorithms limits the expressiveness of the cost function (the discriminator).

In such cases, the cost function might only reward some of the desirable actions seen in the

expert demonstrations. This could cause the agent to only learn partially correct motions or

perhaps not learn to imitate the expert in all possible ways.

GANs also lack some important features that are desirable qualities for generative modelling

techniques in robotics tasks. The original definition of the adversarial objective – the definition

that is used in most adversarial imitation learning algorithms – lacks the ability to condition

the output of the generator on features that could define output modality or qualitative

characteristics. This highly desirable characteristic would allow the user to define exactly

what kind of output is needed. From the point of view of the learning policies, conditioning

can enable the user to change the cost function (discriminator) depending on the desired

motion characteristics. For example, it might be beneficial to be able to generate robot motions

conditioned on the objects that the end effector is manipulating. Conditioning could also let

the user slowly update the robotic agent’s reward function as training progresses. For example,

the cost function could be set to reward the agent for vaguely similar actions in the beginning

and then progressively change to reward the agent only for actions that are exactly the same as

the expert. This might greatly improve the stability of the learning algorithm.

[52] propose a conditional GAN architecture that can encode conditioning features in the latent

space vector 𝑧, thereby allowing the generator to also generate conditioned outputs. However,

this simple addition does not alleviate the problem of mode dropping and the generated

outputs are still restricted in modality. Further, methods for probabilistic conditioning (such

as [53], seen in diffusion) that can drastically improve sample diversity have not been fully

explored in the GAN setting. In comparison, generative models discussed in section 2.3 are

more open to conditioning in general. The task of conditioning a generative model can also

be thought of as changing the learnt distribution by multiplication with another “modifying"

distribution. The inability of GANs to adapt the learnt distribution means that GANs are less

effective at tasks that involve denoising or computing posteriors from the generated samples.
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In contrast, methods like diffusion can easily be adapted for tasks like in-painting or image

colourisation. In the context of robotics, it is often necessary to iteratively update samples

based on the evolving dynamics of the environment. For example, consider updating the

end-effector’s target pose depending on a noisy current state (as a result of actuator errors).

Such iterative changes are quite difficult when using adversarial objectives.

1D Sample Space

Non-Smooth Cost Fn

1D Sample Space

Smooth Cost Fn

Figure 2.5: A 1D example of the non-smooth nature of GAN discriminators and the subsequent optimisation issues.

The GAN discriminator function is shown on the left. The hatched regions indicate parts of the sample space that

the discriminator identifies as not being from the data distribution. For these regions, 𝑑(𝑥) = 0 and consequently

∇𝜃𝑑(𝑥) = 0. This means that a function approximator parameterised by 𝜃 can not obtain informative gradients in

the hatched regions, thereby failing to learn properly.

These limitations in GAN-based learning algorithms could be addressed by a different choice of

generative model. The desired generative model must be capable of providing smooth reward

functions that accurately incentivise the agent to learn policies that imitate all styles of motions

in the expert dataset. The model must also be stable to train and capable of conditioning. The

following chapter discusses energy-based models that seem to check all these requirements.

2.3. Energy Based Models
Energy-based models (EBMs) are based on a probability density modelling framework that

defines the probability distribution of a random variable 𝑥 through the Boltzmann distribution

[41], [47]. Under such a framework

𝑃(𝑥) =
exp(−𝐸(𝑥))

𝑍

where 𝐸(𝑥) is the energy function and 𝑍 is known as the partition function (or normalising

constant) that ensures that

∫
𝑃(𝑥)𝑑𝑥 = 1. This requirement on 𝑍 is a source of challenge

for most likelihood-based generative models. Most techniques balance a trade-off between

model simplicity and expressiveness by varying the formulation of 𝐸(𝑥) and 𝑍. For instance,

generative models such as autoregressive or flow-based models attempt to learn the underlying

data distribution through restricted but tractable (analytically computable) versions of the

normalising constant, but in doing so also restrict their expressiveness and are only able
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to capture simpler data distributions. Energy-based models attempt to maintain model

expressiveness while also sidestepping the constraints imposed on 𝑍. Instead of specifying a

normalized probability, they only specify the unnormalized negative log probability (energy

function). Since the energy function does not need to integrate to one, it can be parameterized

with any nonlinear regression function [41].

While there are several procedures for training EBMs, this report mainly focuses on score-

matching. The score is defined as the gradient of the log probability w.r.t the sample. Given

𝑝𝜃(𝑥) =
exp(−𝐸𝜃(𝑥))

𝑍𝜃

Where the learnt distribution 𝑝𝜃 is computed as a Boltzmann distribution over a learnt energy

function 𝐸𝜃 and some normalising constant 𝑍𝜃 that is not a function of 𝑥 but only 𝜃,

𝑠𝑐𝑜𝑟𝑒 = ∇𝑥 log 𝑝𝜃(𝑥) = ∇𝑥 log

exp(−𝐸𝜃(𝑥))
𝑍𝜃

= −∇𝑥𝐸𝜃(𝑥) −������:0∇𝑥 log𝑍𝜃 = −∇𝑥𝐸𝜃(𝑥)

As it turns out, defining the score as a gradient negates the need to learn an approximation

for the normalising constant. Techniques like Langevin MCMC [54]–[56] use this fact to

sample from the learnt distribution by first sampling from a simple tractable distribution (like

a Gaussian distribution) and then following a schedule of iterative “denoising" by traversing

along the gradient of the log probability (or as shown above, the negative gradient of the

energy). Algorithm 1 shows a simple procedure to use Langevin MCMC to sample from a

distribution determined by a learnt energy function 𝐸𝜃()

Algorithm 1 Sampling from 𝑝𝜃() with Langevin MCMC [41]

Require: 𝑠𝑐𝑜𝑟𝑒 = ∇𝑥 log 𝑝𝜃(𝑥) = −∇𝑥𝐸𝜃(𝑥)
Require: Noisy sample 𝑥0 ∼ 𝒩(0, 𝐼), number of timesteps 𝐾, step size 𝜖

1: 𝑥𝑘 = 𝑥0

2: 𝑘 = 0

3: repeat
4: 𝑥𝑘+1 = 𝑥𝑘 − 𝜖

2
(−∇𝑥𝑘𝐸𝜃(𝑥𝑘))

5: 𝑥𝑘 = 𝑥𝑘+1

6: 𝑘 = 𝑘 + 1

7: until 𝑘 = 𝐾

return 𝑥𝑘

While Langevin MCMC is a way of sampling from a complex, intractable distribution (rep-

resented by a learnt energy function in this case), score-matching is the procedure to train a

network to learn that energy function. The theoretical basis of score-matching is as follows [41].

Given two real-valued functions 𝑓 (𝑥) and 𝑔(𝑥), 𝑓 (𝑥) = 𝑔(𝑥) + 𝑐𝑜𝑛𝑠𝑡. if their first derivatives

are the same for all values 𝑥 (i.e.
𝑑
𝑑𝑥
𝑓 (𝑥) = 𝑑

𝑑𝑥
𝑔(𝑥)). Think of one of these functions – say 𝑓 (𝑥) –
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as the learnt probability density function and the other as the data probability density function.

This implies that 𝑔(𝑥) can be recovered by learning a function 𝑓 (𝑥) whose first derivative is the

same as 𝑔(𝑥). Score-matching is the procedure of learning the data distribution by matching the

derivative of the log probability of a learnt function with that of the data. Given the definition

of score from above, this simply amounts to learning to “match" the scores of the learnt and

the data distribution. Given an unknown data probability density function 𝑝𝑑𝑎𝑡𝑎 , we can draw

i.i.d samples from this and learn a parameterised probability density function 𝑝𝜃 to minimise

the objective

𝐷𝐹𝑖𝑠ℎ𝑒𝑟(𝑝𝑑𝑎𝑡𝑎 | |𝑝𝜃) = E𝑝𝑑𝑎𝑡𝑎 [
1

2

∇𝑥 log 𝑝𝑑𝑎𝑡𝑎(𝑥) − ∇𝑥 log 𝑝𝜃(𝑥)
2

2

]

𝐷𝐹𝑖𝑠ℎ𝑒𝑟(𝑝𝑑𝑎𝑡𝑎 | |𝑝𝜃) = E𝑝𝑑𝑎𝑡𝑎 [
1

2

∇𝑥 log 𝑝𝑑𝑎𝑡𝑎(𝑥) − ∇𝑥𝐸𝜃(𝑥)
2

2

]

Even though ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎(𝑥) is unknown, under the assumption that 𝑝𝑑𝑎𝑡𝑎(𝑥) is continuous,

differentiable, and tends to 0 as 𝑥 tends to infinity, it can be shown that the Fisher divergence

can be rewritten independent of the data distribution [41].

2.3.1. Denoising Score Matching & Diffusion
While the Fisher divergence can theoretically be shown to be independent of the data distribution,

this requires the assumption that it is continuous and differentiable everywhere. This is surely

not the case for a host of datasets and modalities that might be discrete and bounded in value or

simply derived from discontinuous data distributions (given that datasets are sets of samples

and the continuity of the unknown data density is not provable). This would render log 𝑝𝑑𝑎𝑡𝑎(𝑥)
discontinuous and its derivatives undefined. Further, the data density independent objective

derived from the Fisher divergence has the downside of requiring the computation of second

derivatives (a process that is quadratic in data dimensionality).

Denoising score matching (DSM) [57] is a modification of the default score-matching procedure

that allows for the use of discontinuous data distributions that might not always be defined

everywhere, without requiring the computation of second derivatives. The issues with

discontinuity are resolved by the addition of a small amount of noise vectors 𝜖 sampled

from a continuous noise distribution (normally Gaussian) to the data samples. The resulting

distribution is 𝑞(�̃�)

�̃� = 𝑥 + 𝜖

𝑞(�̃�) =
∫

𝑞(�̃� |𝑥) 𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑑𝑥

The Fisher divergence objective is then modified to be
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𝐷(𝑞(�̃�)| |𝑝𝜃(�̃�)) = E𝑞(�̃�)[
1

2

∇𝑥 log 𝑞(�̃�) − ∇𝑥 log 𝑝𝜃(�̃�)
2

2

]

𝐷(𝑞(�̃�)| |𝑝𝜃(�̃�)) = E𝑞(�̃�)[
1

2

∇𝑥 log 𝑞(�̃�) − ∇𝑥𝐸𝜃(�̃�)
2

2

]

As a result of this, the 𝑝𝑑𝑎𝑡𝑎 term is completely removed from the objective and the computation

of second derivatives is negated.

Diffusion models [34], [58] are generative models that interweave Langevin MCMC and score-

matching. Diffusion models can be thought of as denoising functions that convert simple,

tractable distributions (like Gaussians) into complex data distributions by directly learning to

predict the score (gradient of log probability) for samples from the tractable distribution. The

samples from the tractable distribution are often viewed as “noisy" representations of samples

from the data distribution and the score is viewed as a “denoising vector" that nudges the

noisy sample towards the data distribution.

Diffusion models are trained in a two-step procedure, where samples from the data distribution

are first distorted by the addition of noise (as per a pre-defined Markov Chain) to convert them

to samples resembling the known, tractable distribution. In the second step, the noise added

to the samples is matched with a prediction of the added noise (returned by the diffusion

model) via denoising score matching. Thus, by applying score matching on a per-sample basis,

a diffusion model learns to convert samples resembling random noise into samples from some

unknown data distribution. In doing so, diffusion models also implicitly learn the energy

function (since the score is just the negative gradient of the energy of a sample) but save the

processing time of explicitly computing these gradients.

The artificially added noise is added as per a schedule following a forward Markov Chain

using an iterative kernel 𝑇(𝑥𝑘+1 |𝑥𝑘 , 𝛽𝑘) where 𝛽𝑘 is the diffusion rate that defines the type of

schedule used. Most recent works use a linear schedule as [58] also highlight that they did

not notice stark differences compared to other choices of the schedule. Most diffusion models

use a Markov kernel that converts the data distribution into an identity-covariance Gaussian

distribution. In this case, it is also possible to directly obtain 𝑥𝑘 = 𝑓 (𝑥0) without having to

follow all steps in the Markov Chain by defining

𝛼𝑘 = 1 − 𝛽𝑘

𝛼𝑘 = Π𝑘
𝑖=1

𝛼𝑘

𝑥𝑘 ∼ 𝒩(
√
𝛼𝑘𝑥0 , (1 − 𝛼𝑘)𝐼)

This greatly speeds up training time and most modern architectures also vary the timestep across

samples in the training minibatch for stable optimisation via gradient descent. The reverse
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process is to learn the transformation 𝑇(𝑥𝑘 |𝑥𝑘+1 , 𝛽𝑘) by predicting the noise 𝜖𝑘 = 𝜖𝜃(𝑥0 , 𝑘)
given timestep 𝑘 and a noise-free sample from the data distribution 𝑥0. [36] also show that a

“reparameterisation" trick can be used to learn the variances (dictated by 𝛽𝑘). However, it can

also be assumed to be constant as a hyperparameter (given that it is kept “small" in value) [34].

Algorithm 2 shows the diffusion procedures for training and sampling from [34]. Figure 2.6

shows both the forward and reverse diffusion processes on the toy Swiss-roll dataset.

Algorithm 2 Diffusion: Training & Sampling [34]

Require: Data distribution 𝑝𝑑𝑎𝑡𝑎 from which samples can be drawn, max steps in schedule 𝐾

Require: Score prediction network 𝜖𝜃 parameterised by 𝜃
1: procedure Training

2: repeat
3: 𝑥0 ∼ 𝑝𝑑𝑎𝑡𝑎()
4: 𝑘 ∼ Uniform(0,1,2... K)
5: 𝜖 ∼ 𝒩(0, 𝐼)
6: Predict noise vector (score) = 𝜖𝜃(

√
𝛼𝑘𝑥0 , (1 − 𝛼𝑘)𝜖, 𝑘)

7: Step using ∇𝜃 ∥𝜖 − 𝑠𝑐𝑜𝑟𝑒∥2

2

8: until convergence

9: end procedure

10: procedure Sampling

11: Sample 𝑥𝐾 ∼ 𝒩(0, 𝐼)
12: for k = K, K-1, .., 0 do
13: 𝑧 ∼ 𝒩(0, 𝐼) if 𝑘 > 1 else 𝑧 = 0

14: 𝑥𝑘−1 = 1√
𝛼𝑘
(𝑥𝑘 − 1−𝛼𝑘√

1−𝛼𝑘
𝜖𝜃(𝑥𝑘 , 𝑘)) + 𝜎𝑘𝑧

15: end for
16: return 𝑥0

17: end procedure

2.4. Discussion: Comparing GANs & EBMs
This section evaluates the implications of energy-based generative modelling and contrasts the

properties of diffusion models with the drawbacks of GANs seen in section 2.2.1. An inherent

benefit of learning energy functions instead of direct mappings from the latent space to the

sample space is the ability to run arbitrarily long inference loops. Given an energy function

𝐸𝜃() the procedure from Algorithm 1 can be run with an arbitrarily large maximum timestep

𝐾 to generate denoised samples with varying quality. This means that once trained, an EBM

is quite flexible in its application and can be implemented on systems with varying compute

characteristics. Under the limit of infinite time, Langevin MCMC is also known to generate

samples truly from the data distribution [59]. Energy-based models also sidestep issues of

constrained expressiveness that come with having to rely on direct mappings from the latent

space to the sample space. Architectures like GANs and VAEs often fail to correctly map the

whole latent space to multi-modal distributions with large disconnected regions in between

modes (mode dropping). A reason for this could simply be the inherent complexity of learning

a multimodal piecewise mapping in a large sample space. In contrast, EBMs map samples to
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Figure 2.6: The application of a diffusion model on the Swiss roll dataset [58]. The top row shows the distribution

at different points in the forward Markov Chain. The middle row shows the denoised distribution obtained by

iteratively removing some amount of predicted noise from a Gaussian distribution. The third row shows a gradient

field of the score (denoising vectors) predicted by the diffusion model

a scalar value and can easily represent disjoint distributions by assigning low energies [59].

Since EBMs do not require the simultaneous optimisation of multiple independent function

approximators with different objectives, they also tend to be far more stable during training

[48]–[50], [60]. [6] also perform large-scale comparative studies of multiple state-of-the-art

GAN architectures to argue that many of the GAN performance improvements proposed in

recent literature might be a result of the inherent variance in GAN training, hyperparameter

sensitivity, and access to larger computational budgets than meaningful algorithmic changes.

EBMs (or score-based models like diffusion) also allow natural conditioning on arbitrary

features that could define the characteristics of the generated sample. Diffusion for example

– while already using the denoising timestep as conditioning – can condition its denoising

prediction on features that define output characteristics. For example, [10], [61] present image

generation diffusion models that use text prompt embeddings to condition the output of the

model towards the desired mode in the data distribution. [53] also present a technique to

further improve sample quality by probabilistically dropping the conditioning during training.

From a robotics viewpoint, the ability to condition the generation process proves to be a rather

important advantage and allows agents to dynamically vary the generated samples based on

the current context. For example, a robot could generate trajectories of motions conditioned on

the items that are held by the end-effector.

From the perspective of reinforcement learning, energy could also be interpreted as the

“desirability" of that sample. Viewing energy functions as cost functions for optimisation

could lead to interesting techniques for learning optimal control. EBMs also naturally offer

composability [59] – viewing energies as costs, the summation of two energies evaluates to

the summation of the goals implied by them. Further, being smooth in the sample space,
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energy functions are also easier to optimise and promise better gradient-based learning.

These characteristics make energy-based models quite enticing as a substitute for adversarial

architectures in robotics tasks that require data generation.



3
Imitating Experts

3.1. The Need For Imitation Learning
As briefly introduced in the motivation section of this report, imitation learning is a field of

machine learning that aims to teach robotic agents to mimic human experts. This kind of

mimicry seems like a very natural way to teach robots crucial physical skills like locomotion,

picking and manoeuvring everyday objects, interacting with tools etc. Much like reinforcement

learning (section 1.3.3), the goal in imitation learning is to learn a policy that maps the agent’s

current state to a suitable action. In fact, quite like reinforcement learning, many popular

imitation learning algorithms also learn such a policy by maximising the rewards given to

the agent, with the added step of first formulating a suitable reward function that facilitates

solving the required task. With so many similarities between the two frameworks, it is natural

to wonder whether imitation learning is even worth pursuing. Can these physical skills not be

learnt simply through reinforcement learning with a carefully designed reward function? The

following few paragraphs differentiate imitation learning from reinforcement learning and

present arguments in favour of reward learning.

As described in section 1.3.3, reinforcement learning is the problem of learning a policy for

some “intended goal behaviour" by repeated interaction with an environment that provides a

reward signal. [19] formalise this intended goal behaviour through the reward hypothesis, stating

that the goals and purposes of a rational agent can be fully defined as the maximization of the

expected value of the cumulative sum of rewards. While in theory, the reward hypothesis can be

thought of as the foundational pillar upon which much of the formal analysis of reinforcement

learning is developed, in practice, it is often quite challenging to learn the desired behaviour

only through a well-designed reward function. This is the primary challenge in reinforcement

learning for complex physical tasks.

First, the notion that reinforcement learning can converge to the desired behaviour rests on

26
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the implicit assumption that the reward signal developed by the problem designer correctly

captures the required motivation for an agent to learn the intended behaviour [1]. While

designing a reward signal that provides the correct motivation for the intended behaviour might

be trivial in simple problems, it is often a major challenge when trying to learn complex skills

such as those required in the field of robotics. A major drawback of reinforcement learning

is when the agent learns to maximise rewards through behaviour that was not intended by

the problem designer [62], [63]. Imagine trying to motivate a robot to solve a maze by only

providing a positive reward for forward progress. The agent can easily learn to hack this

reward function by repeatedly making a small amount of forward progress, retracing its steps,

and making the same forward progress again. This problem can be sidestepped if the “true"

reward signal is instead something that the agent could learn through demonstrations of the

intended behaviour – the fundamental idea of imitation learning.

Further, as the complexity of the problem increases, so do the possibilities for trial and error.

Converging on sequences of actions that provide the highest expected return is a lot more

challenging in problems involving large state and action spaces with tons of stochasticity –

the salient features of most robotics tasks. While it is theoretically possible to asymptotically

converge on an optimal policy purely through intermittent random exploration, it is far easier

to do so given some kind of guidance from an expert [1]. This is especially enticing when

humans indeed can provide such guidance. In most cases of robotic manipulation, it is likely

that a human already knows how to solve the given task. This knowledge might not be as

an explicit policy that maps states to actions, but it could be provided implicitly as a set of

demonstrations. Leveraging this information is likely to simplify the learning process for

robotic agents. In fact, [64] demonstrate both empirically and theoretically that methods that

leverage such expert guidance can achieve faster and better solutions with less training data

than their less-informed reinforcement learning counterparts.

In short, learning a policy from scratch (without any prior knowledge) is a rather challenging

task. Even as humans, learning complex tasks such as tool operation, dance, acrobatics etc.

often involves instructions or demonstrations from other expert humans. Imitation Learning

can be thought of as a set of problems where the agent uses at least some amount of input

from an expert or a demonstrator when attempting to learn a task [1], [65], [66]. The type

and modality of input taken from the expert varies across methods but it is generally a set of

demonstrations from the expert showcasing the intended way to complete a task.

Formally, imitation learning is defined as the set of problems where the learner’s goal is to

minimise some distance measure (dist()) between the probability distribution/density of

sampling features 𝜙 from the expert’s demonstrations, say 𝑝𝜙∼expert(𝜙) and the probability

distribution of sampling 𝜙 from the agent’s learnt policy 𝑝𝜙∼agent-policy
(𝜙) [1]. The methods

detailed in the following sections achieve the same objective in various ways.
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𝜋𝐼𝐿 = arg min

𝜋
dist(𝑝𝜙∼expert(𝜙), 𝑝𝜙∼𝜋(𝜙))

Imitation learning is generally formulated in either of the two following branches. One, as the

problem of directly replicating the given demonstrations and two, as the problem of recovering

the underlying reward function from the given expert demonstration and then optimally

behaving under this reward function. The former family of methods is akin to supervised
learning and is often known as behaviour cloning. The latter is commonly known as inverse
reinforcement learning (IRL) followed by optimal control (via a host of methods). While this

literature research primarily focuses on IRL, section 3.1.1 also provides a brief introduction to

behaviour cloning and some challenges of directly replicating expert demonstrations.

3.1.1. Behaviour Cloning & Its Challenges
Behaviour Cloning (BC) [67] is a subfield of imitation learning where the agent aims to directly

recover a policy𝜋(𝑠) as a function of the agent’s current state from a set of expert demonstrations

of intended actions 𝑎𝐸 ∈ 𝐴 in states 𝑠 ∈ 𝑆. The dataset can be written as 𝒟{(𝑎𝐸 , 𝑠)}. This is

generally done via the standard supervised learning procedure.

It is important to note the fact that behaviour cloning operates under the premise that the

learner has access to trajectories of the expert’s policy that include the actions that were
executed by the expert. This fact is highlighted here as it is one of the main shortcomings of

this family of methods (more on partial observability in section 3.2). Behaviour cloning also

assumes that the expert trajectories show optimal behaviour. Assuming that behaviour cloning

can perfectly capture the expert’s demonstrations, such a policy can in theory never outperform

the expert. It is hence crucial that the expert demonstrations are indeed close to the behaviour

that is actually desired in the system. Depending on the class of the BC algorithm, it might

either be prone to errors caused by the correspondence problem or might fail to learn corrective

behaviour (if the distribution of states from the expert dataset is not the same as the distribution

of states encountered by the agent, non i.i.d). [68], [69] show that the worst-case performance

gap between the expert and the imitator grows quadratically with the number of decision

steps in the environment (given that the imitator has not perfectly captured the expert’s action

distribution, which is almost impossible to avoid). Hence, policies that are still close in terms

of a supervised learning loss can be drastically different on application in an environment.

Behaviour Cloning is often seen as a rudimentary first step in the problem of imitation and can

be superseded in performance and sample efficiency by alternative approaches. For instance

[70] present a BC-like method to imitation learning that simply uses reinforcement learning but

augments the reward function to provide the imitator with additional incentive when taking

actions that were also chosen by the expert. This simple addition already greatly improves

over the basic BC formulation.
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3.1.2. Imitation via Inverse Reinforcement Learning
The second major family of imitation learning algorithms employs a procedure to recover

the unknown reward function that the expert trajectory seems to have maximised and then

maximise the expectation over the return computed using this reward function (using an

optimal control method) to obtain the learner’s policy. The algorithms to recover the reward

function are termed inverse reinforcement learning (IRL).

Formally, IRL makes the assumption that the expert is operating under the framework of a

Markov Decision Process with the reward formulated as a function of the expert’s trajectory

𝑅(𝜏) (since that is what the imitating agent has access to). The general outline of an IRL

algorithm, as described in [1] is shown in Algorithm 3. These algorithms use parametric

representations of the reward function and policy, keep track of the visitation frequency of

state-action pairs following the learnt policy, and then match this with the trajectories found in

the expert dataset through some optimisation objective. The policy and reward function is

then updated iteratively with gradient-based optimisation.

Algorithm 3 General Feature Matching IRL Algorithm [1]

Require: Expert trajectories 𝒟 = {(𝜏𝑖)}𝑁𝑖=1

Require: Parameterise the learnt reward function and imitator policy 𝑅, 𝜋 with parameters 𝑤,

𝜃
1: repeat
2: Compute state-action visitation frequency 𝜇 for the current version of the policy 𝜋𝜃

3: Evaluate objective function ℒ by comparing 𝜇 and the distribution implied by 𝒟
4: Compute the gradient of the objective in terms of the reward function parameters ∇𝑤ℒ
5: Update parameters 𝑤 in the direction of the gradient

6: Update parameters of 𝜋𝜃 using some RL algorithm

7: until until convergence criteria met

return Reward function and imitator policy 𝑅𝑤 , 𝜋𝜃

3.2. Partial Observability: Imitation In The Absence Of Actions
When discussing imitation learning algorithms, it is important also to note their dependence

on the modality of information available in the expert demonstrations. Until recently, it was a

general assumption in most IRL studies that the imitating agent has access to all aspects of the

expert’s trajectory, i.e. the complete sequence of states and actions. However, recent works

such as [4], [71] highlight the realities of most applications of imitation learning in robotics. It

is quite often the case that the imitating agent simply can not have access to the specific actions

executed by the expert.

First, in many of the cases where imitation learning might be an intuitive solution, the expert

does not have an explicit representation of its policy. Imagine an expert surgeon trying to teach

a robot assistant. The surgeon might be able to demonstrate high-precision manoeuvres as a

set of tool trajectories (states) with ease, but it might not be possible for them to point out the

exact torques and forces exerted at their joints (actions). Another interesting case of imitation
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where action information could be unavailable is trying to learn a skill by viewing videos of an

expert (with frames being the states). Secondly, even in situations where recording actions is

technically possible, it might still pose additional constraints and challenges. One could argue

that instead of moving their own body to teach the robot, the surgeon could instead just move

the robot’s arm. While this is possible on paper, it is both drastically slower and cumbersome

than if the surgeon could simply demonstrate the motion themselves. It further requires the

expert to have a certain level of skill in the process of demonstration (the surgeon would have

to be comfortable with robots and have the skill to move the robot’s arm in the same way

as they would theirs). Finally, requiring actions in the expert trajectory freezes the possible

embodiments of agents that could imitate the expert. The actions recorded by the surgeon on

one kind of robot will probably not transfer over to another which has a different configuration

of actuators. This is defined as the correspondence problem [66], [72]. The correspondence

problem occurs when the embodiments of the expert and the demonstrator are different. It

could also occur in situations where both have the same embodiment, but the trajectories learnt

by the expert do not comply with the dynamics model of the imitating system. Algorithms

that rely on the availability of actions would hence be heavily restricted in such real-world

scenarios.

Apart from the above-mentioned practical considerations, [73] argue that in long-horizon

situations, it might also be better to plan a sequence of states than actions. The actions can

then be induced from these state trajectories by following gradient-free optimisation methods

like CEM/CMA, or model-based control techniques like MPC/MPPI. In long-horizon tasks,

they find action-based methods to produce only sub-optimal plans. This is also seen in

recent imitation learning methods predicting action sequences like Diffusion Policy [74] where

temporal inconsistency is mitigated by using receding horizon control (only applying a small

fraction of predicted actions to the environment at each step). These insights are especially

relevant to robotics which often involves long-running tasks where frequent replanning is

computationally infeasible.

The inability to operate under the constraints of partial observability is a major shortcoming of

a large portion of imitation learning methods in recent literature. Having identified this crucial

gap, this report also focuses on achieving imitation learning under partial observability.



4
Imitation Learning Through

Generative Modelling

Having discussed generative machine learning models (chapter 2) and imitation learning

(chapter 3) in the previous chapters, the current chapter presents arguments in favour of

their combination. Imitation learning algorithms stand to gain significantly by incorporating

generative models like GANs within their reward learning sub-routine. This chapter draws

parallels between the inner workings of generative modelling and imitation learning and

discusses the potential benefits of their combination. The following sections then discuss some

state-of-the-art generative imitation learning algorithms and draw attention to their benefits

and shortcomings.

Generative models have the ability to induce probability distributions from large unstructured

datasets to produce new data samples that, in theory, just seem to have come from the original

unknown data distribution. To achieve this, generative models minimise the divergence

between the data and learnt distributions. Similarly to generative models, imitation learning

also aims to minimise the diverge between two probability distributions. In the case of IL, these

are distributions of the agent’s and the expert’s motions. Viewing the demonstration motions

as i.i.d samples from the expert (data) distribution, it follows that the underlying objectives

of imitation learning are essentially the same as those of generative modelling [1]. The only

distinction is that unlike generative modelling, where the goal is to just return new samples,

the goal with imitation learning is to instead learn a policy that maps an agent’s state to some

desired action. Given the aligned objectives of these methods, it stands to reason that their

combination might lead to newer techniques that benefit from their individual merits.

The key idea with generative imitation learning is to leverage the many advantages of generative

objectives (sample diversity, better expressiveness etc.) to better guide an agent towards the

intended policy. In usual circumstances, the probability distributions learnt by generative

31
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models are not their direct output and are just used to sample the new data points that the model

returns as outputs. While different generative techniques model the distributions differently

(EBMs use energy functions while GANs use classifiers to iteratively update a sampling

function), in all cases of generative modelling, the probability distributions inherently specify

the desirability of the generated sample. The higher the probability of a sample, the more

likely it is that this sample might have come from the data distribution. In the case where the

data points are the expert’s motions, the learnt probability distribution can be leveraged as cost

functions that might drive a learning agent to take desirable actions. Hence, using generative

objectives to learn reward functions, a learning algorithm could easily distil the motivations of

the expert and the dynamics of the environment just from demonstrations, while having the

added benefit of generating diverse samples. It could also be argued that these features make

generative modelling based IL more sample-efficient and better at managing exploration. It

must also be noted that the inclusion of generative models in the IRL pipeline does not impose

additional restrictions on the other parts of IRL. In fact, recent works (section 4.8) also use

these models to learn rewards and subsequently use traditional IRL approaches like maximum

entropy/ maximum occupancy entropy to then learn policies from these rewards.

The following sections discuss key works in recent literature that attempt to use generative

modelling techniques like GANs and EBMs within imitation learning. The general theme

across all methods discussed here is to use a generative model either within the IRL pipeline

shown in Algorithm 3 to learn a reward function or to instead use generative modelling to

directly predict actions (similar to behaviour cloning). The next few sections discuss the

algorithms, their theoretical foundation, and claimed benefits over the state-of-the-art. This is

followed by a broader, comparative discussion (section 4.9) that highlights their limiting factors

and some unexplored gaps that, if addressed, could improve their performance.

4.1. Generative Adversarial Imitation Learning (GAIL)
[2] introduce GAIL, a method to iteratively learn and optimise the return from the underlying

reward function implied in expert demonstrations through an optimisation objective similar to

that seen in Generative Adversarial Networks [35]. GAIL proposes to “directly" learn a policy

instead of first learning a reward function and then optimising it (although internally it still

does learn a reward function). While much of the theoretical work discussed in [2] is beyond

the scope of this report, the main theoretical contributions are described below.

In general, IRL can be formulated as a procedure which finds a reward function under which

the expert outperforms all other policies. Note that this does not directly imply that the expert’s

policy is optimal at solving the problem but instead defines IRL as a problem where a reward

function is found under which the expert policy is the best. In this formulation, the reward

function is defined to be regularised by a function 𝜓. An RL problem can then be defined

to optimise the reward function returned by the inner IRL problem. [2] provide a different

perspective on IRL by first defining a policy in terms of its occupancy measure (𝜌𝜋) – the

distribution of state-action pairs that an agent encounters when navigating the environment
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with the policy – and then viewing IRL as a procedure that tries to induce a policy that matches

the expert’s occupancy measure. In doing so they show that various settings of 𝜓 lead to

various imitation learning algorithms with varying degrees of similarity between the expert

and the imitator. With no reward regularisation, one can theoretically recover a policy that

exactly matches the expert’s occupancy measure. While this is enticing at first, it is not very

practical as the expert dataset is finite and can not cover all possible ways of acting in a very

large state-action space. They then show various examples of regularisation and its effect on

the ability of the recovered policy to match the expert’s occupancy measure.

Under this interpretation of IRL, [2] propose a new form of regularisation 𝜓 under which the

imitator policy accurately matches the expert’s occupancy measure while also being tractable

in large environments. The regulariser from GAIL is

𝜓𝐺𝐴 =


E𝜋𝐸 [𝑔(𝑟(𝑠, 𝑎))] 𝑖 𝑓 𝑟 < 0

+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑟(𝑠, 𝑎) is the cost function learnt via IRL and

𝑔(𝑥) =

−𝑥 − log(1 − 𝑒𝑥) 𝑖 𝑓 𝑥 < 0

+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This regulariser places low penalties on reward functions that return high rewards to expert

state-action pairs and heavily penalises those that assign low rewards to the expert. 𝜓𝐺𝐴 is

also dependent on the expert dataset and is hence problem agnostic. Based on this definition,

𝜓𝐺𝐴(𝜌𝜋 − 𝜌𝜋𝐸 ) equates to the Jensen Shannon divergence (section 1.3.1) between 𝜌𝜋 , 𝜌𝜋𝐸 .

Minimising 𝜓𝐺𝐴 is roughly equivalent to minimising the difference between the imitator and

expert. This interpretation of the regulariser is analogous to generative adversarial networks

where a generator network 𝐺 attempts to generate samples that “fool" a discriminatory 𝐷. In

the case of GAIL, the learner’s occupancy measure 𝜌𝜋 is analogous to the distribution of the

generator while the true data distribution is represented by the expert’s occupancy measure

𝜌𝜋𝐸 . GAIL essentially boils down to learning a discriminator (classifier) to distinguish between

these two and finding a saddle point as a policy that minimises the classification error. The

GAIL optimisation problem is (the causal entropy term is dropped as it does not change the

theoretical or empirical results [4])

min

𝜋∈Π
max

𝐷∈(0,1)
E𝑠,𝑎∼𝜋[log(𝐷(𝑠, 𝑎))] + E𝑠,𝑎∼𝜋𝐸 [log(1 − 𝐷(𝑠, 𝑎))]

Intuitively GAIL simply uses the learnt discriminator as an implicit “reward" function and

iterates between using RL to update the policy and updating the discriminator parameters by
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maximising the difference between the distributions of the expert and imitator trajectories.

Algorithm 4 General Adversarial Imitation Learning [2]

Require: Expert trajectories 𝜏𝐸 ∼ unknown 𝜋𝐸
Require: Parameterise the imitator policy and discriminator parameters by 𝜃, 𝑤 as 𝜋𝜃, 𝐷𝑤

1: repeat
2: Sample trajectory 𝜏 ∼ 𝜋𝜃

3: Update 𝐷𝑤 to maximise E𝑠,𝑎∈𝜏[log(𝐷(𝑠, 𝑎))] + E𝑠,𝑎∈𝜏𝐸 [log(1 − 𝐷(𝑠, 𝑎))]
4: Update 𝜋𝜃 via policy gradient algo (TRPO here) with reward log(𝐷𝑤(𝑠, 𝑎))
5: until until convergence criteria met

return Imitator policy 𝜋𝜃

4.2. Generative Adversarial Imitation from Observation (GAIfO)
As described in section 3.2, requiring actions in the expert dataset drastically reduces the

applicability of imitation learning in real-world situations. [4] propose a modification on GAIL

that does not rely on the actions executed by the expert to imitate behaviour. GAIfO uses

state-only trajectories with a modified goal of not directly imitating the expert’s actions but

instead taking actions that have the same effect in the environment as the (unknown) actions

that were executed by the expert. This modification means that reward functions are learnt

not as a function of states and actions but as a function of state transitions. [4] posit that the

desirable state transitions seen in expert demonstrations form a low dimensional manifold in

the 𝑆 × 𝑆 space and the reward functions learnt via GAIfO penalise state transitions observed

in imitator trajectories based on their closeness to this manifold.

Similar to GAIL, [4] show theoretically that performing reinforcement learning on a reward

function learnt by inverse reinforcement learning from observation with regulariser 𝜓 and

unknown expert policy 𝜋𝐸, 𝑅𝐿 ◦ 𝐼𝑅𝐿 𝑓 𝑂𝜓(𝜋𝐸) is equivalent to finding a policy that minimises

the regulariser over the difference in the occupancy measures of the expert and imitator,

arg min𝜋∈Π 𝜓 ∗ (𝜌𝜋 − 𝜌𝜋𝐸 ).

They then define a regulariser that is quite similar to the one from GAIL but instead uses a

reward function on state transitions

𝜓𝐺𝐴 =


E𝜋𝐸 [𝑔(𝑟(𝑠, 𝑠′))] 𝑖 𝑓 𝑟 < 0

+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

GAIfO ultimately amounts to the exact setup of GAIL but with a discriminator (classifier) that

is instead a function of state transitions. Similarly to GAIL, here, the discriminator attempts

to distinguish the source of the observed data to identify whether the given transitions are

from expert actions in the environment or from a generator’s (imitator policy) actions in the

environment. This process can be viewed as attempting to learn an imitator that leads to

the same state transitions as done by the expert. GAIfO works via the same procedure as
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Algorithm 4 with the discriminator maximising

E𝑠,𝑠′∈𝜏[log(𝐷(𝑠, 𝑠′))] + E𝑠,𝑠∈𝜏𝐸 [log(1 − 𝐷(𝑠, 𝑠′))]

and the imitator policy using log(𝐷𝑤(𝑠, 𝑠′)) as a reward function. GAIL and GAIfO form the

basis for the next few algorithms that have shown significant empirical results in imitating

complex actions such as humanoid walking, running, and even some forms of combat.

4.3. Adversarial Inverse Reinforcement Learning (AIRL)
Adversarial Inverse Reinforcement Learning (AIRL) [75] is an algorithm that uses an adversarial

procedure to learn explicitly formulated reward functions. AIRL claims to improve over

methods like GAIL by explicitly learning a reward function (as a discriminator with a known

functional form that depends on the policy and a value function [76]) and operating at action-

level granularity (as opposed to GAIL which takes in trajectories), thus allowing use in more

difficult problem settings. One of their main contributions is to also learn reward functions that

are robust to changes in the underlying environment – thus facilitating “knowledge transfer".

Their experiments show that AIRL achieves similar performance levels as GAIL on tasks that

do not require knowledge transfer and outperforms other IRL methods by even larger margins.

When compared with GAIL in an experimental setup with a larger variance between the

demonstration environment and the inference environment, AIRL is also shown to outperform

GAIL.

[75] claim that operating with complete trajectories (as done in GAIL), results in a high variance

in the discriminator’s estimates. Their main contribution is to then modify the discriminator

as a function of single state-action pairs. In this modification, they propose to solve the

issue of reward ambiguity. Reward ambiguity is the problem that for any given set of expert

demonstrations, there is more than one optimal reward that describes the expert’s motives.

Given a set of rewards that denote the same expert motives but only differ in formulation [77]

𝑟(𝑠, 𝑎, 𝑠′) = 𝑟(𝑠, 𝑎, 𝑠′) + 𝛾Φ(𝑠′) +Φ(𝑠)

[75] argue that not all shaped rewards (shaped by some function Φ : 𝑆 → ℛ) are robust to

changes in the dynamics of the underlying MDP. This means that given two problems with the

same reward function but different dynamics, a policy learnt to optimise the reward in one

problem is not guaranteed to work well in the other. This implies that a reward function learnt

via IRL in one problem also carries some influence of the dynamics of the problem. A change

in the dynamics of the problem would result in the policy learnt from that reward function

being suboptimal (even if the change only influences the dynamics and not the true reward

function).
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AIRL proposes a discriminator function that is disentangled from the environment dynamics

by formulating it as a summation of a reward approximator 𝑔𝜃 and a shaping function ℎ𝜙. They

show that the reward approximator can be formulated as a function of only the environment

state, thereby disentangling it from the dynamics.

𝐷𝜙,𝜃(𝑠, 𝑎, 𝑠′) =
exp ( 𝑓𝜙,𝜃(𝑠, 𝑎, 𝑠′))

exp ( 𝑓𝜙,𝜃(𝑠, 𝑎, 𝑠′)) + 𝜋(𝑎 |𝑠)
𝑓𝜙,𝜃(𝑠, 𝑎, 𝑠′) = 𝑔𝜃(𝑠, 𝑎) + ℎ𝜙(𝑠′) − ℎ𝜙(𝑠)

The final AIRL algorithm very closely resembles GAIL, however, due to the modified dis-

criminator function, it is now capable of explicitly learning a reward formulation that is also

uninfluenced by changes in the environment dynamics.

4.4. Adversarial Motion Priors (AMP)
Adversarial motion priors [3] is an imitation learning algorithm that combines goal-conditioned

reinforcement learning with a GAIfO [4] style reward function learning scheme. AMP is built

on the idea that while it is quite challenging to assign an objective for the “style" of motion

that the imitator is supposed to learn, it is still straightforward to define higher-level objective

functions like symmetry and effort. AMP learns this style reward by learning to discriminate

(classify) motions in the expert’s dataset from those executed by the learner’s policy. Similarly

to other adversarial imitation learning methods, AMP then trains the imitator via reinforcement

learning using the classifier’s output as a reward function.

The key contributions of AMP are the incorporation of goal-conditioned RL within state-only

adversarial imitation learning and the excellent empirical results shown on full-body humanoid

motion imitation. Since AMP only uses reference motions (and not actual actions) executed by

the expert, the style-reward learnt can also be generalised across different agent embodiments.

In doing so, AMP also sidesteps the correspondence issue discussed in section 3.2.

Formally, AMP uses a linear combination of task reward 𝑟𝐺(𝑠, 𝑠′, 𝑎, 𝑔𝑜𝑎𝑙) and a style-reward

𝑟𝑆(𝑠, 𝑠′) that is learnt as a discriminator 𝐷(𝑠, 𝑠′) learnt through a modified GAIfO objective.

𝑟(𝑠, 𝑠′, 𝑎, 𝑔) = 𝑤𝐺𝑟𝐺(𝑠, 𝑠′, 𝑎, 𝑔𝑜𝑎𝑙) + 𝑤𝑆𝑟𝑆(𝑠, 𝑠′)
𝑟𝑆(𝑠, 𝑠′) = max[0, 1 − 0.25(𝐷(𝑠, 𝑠′) − 1)2]

The offset, scaling, and clipping are done to bind the learnt reward function between [0, 1] as

[3] claim that this aids training. The discriminator is learnt by slightly modifying the GAIfO

objective function to match the least squares GAN objective proposed by [78]. This is done to

simplify the optimisation challenges that are typically seen in GAN-like training (discussed in
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detail in section 2.2). The discriminator objective in AMP is shown below. Proximal policy

optimisation is used within the algorithm to learn the final policy.

arg min

𝐷
E𝑠,𝑠′∼𝜏𝐸 [(𝐷(𝑠, 𝑠′) − 1)2] + E𝑠,𝑠′∼𝜏𝜋[(𝐷(𝑠, 𝑠′) + 1)2]

4.5. Conditional Adversarial Latent Models (CALM)
[5] propose CALM, an adversarial imitation learning technique based on GAIfO (section 4.2)

for learning lower-level motion policies that can then be directed using another learnt higher-

level policy. To achieve this, CALM learns an encoder 𝐸() to transform a series of state-only

trajectories of joint locations (called motions 𝑀) into a latent representation 𝑧 in some space

𝑍. Simultaneously, it learns a policy as a decoder 𝜋(𝑎 |𝑠, 𝑧) to take in the latent space motion

along with the current state of the agent 𝑠 and return actions. This policy learns to decode a

variety of motions in the same function (hence learning a multimodal motion distribution). It

however does not learn the directionality of the motion. To influence the directionality of the

motion, [5] propose to train another high-level policy to select the latent space vectors 𝑧 based

on which the policy generates motions. The selection of latent space vectors is done based on

a user-given input (from which the encoder returns �̂�) that indicates the desired behaviour

style. When combined, this system can produce motions such as “moving in a given direction

while crouch-walking". The combination of these two learnt policies is handled by a finite state

machine.

Similar to GAIfO, CALM also uses a state-only dataset and aims to minimise the Jensen-

Shannon divergence between the policy distribution and the motion dataset distributions of

state transitions, (𝑠, 𝑠′). The discriminator 𝐷 aims to minimise an objective similar to GAIfO

that additionally uses 𝑧 = 𝐸(𝑀) as conditioning.

𝜋𝐶𝐴𝐿𝑀 = arg min

𝜋
E𝑀∼𝑚𝑜𝑡𝑖𝑜𝑛𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝐷𝐽𝑆(𝑝𝜋(𝑠, 𝑠′ |𝑧)| |𝑝𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑠, 𝑠′))]

ℒ𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = E𝑀∼𝑚𝑜𝑡𝑖𝑜𝑛𝑑𝑎𝑡𝑎𝑠𝑒𝑡[E(𝑠,𝑠′)∼𝑝𝑑𝑎𝑡𝑎𝑠𝑒𝑡 [log𝐷(𝑠, 𝑠′ |𝑧)] + E(𝑠,𝑠′)∼𝑝𝜋[log(1 − 𝐷(𝑠, 𝑠′ |𝑧))]]

The higher-level policy that provides directionality information is trained in a standard RL

fashion with a reward for latent similarity. This function rewards latent space vectors similar

to the user-requested direction and penalises those that are not. The final inference procedure

is as follows

1. Given a direction 𝑑∗, and a motion type 𝑀𝑖 , the higher level policy returns �̂�

2. The lower level policy then returns 𝑎 = 𝜋(𝑠, �̂�)

CALM claims to fix the issue of mode-dropping that is seen in GAIfO by using the two-step

procedure of first training an encoder-decoder pair, explicitly conditioning the output of the
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decoder on the latent space vector, and then using a separate higher-level policy for selecting a

hyperplane in the latent space which depicts the user-desired motions. They posit that directly

passing the outputs of an encoder to a decoder (policy) does not produce the desired motions

as the encoder only learns an imperfect mapping from the motion space to the latent space.

Instead, separately conditioning the decoder on a diverse set of latent space vectors forces it to

reproduce a diverse set of motions from the original dataset.

4.6. Diffusion Policy
While algorithms in the previous few sections used GAN-like optimisation objectives to learn

rewards, this and the next few methods employ diffusion models (section 2.3) to learn the

underlying imitation signals. Diffusion policy [74] employs a procedure to directly learn a

mapping from states to actions as a conditional denoising diffusion process (DDPM [34]).

In doing so, they learn a policy in a behaviour cloning-like fashion (by matching the expert

demonstration and policy distributions) but also maintain the generalisation capabilities of

diffusion models. They propose to make two main modifications to DDPM that enable its use

in robotics problems with visual state information. First, the data modality from DDPM is

changed from images to robot action trajectories. Second, the denoising process is conditioned

on the visual state information.

The diffusion model is trained to predict temporally consistent, and reactive sequences of

actions while the predicted actions are applied in the environment via receding horizon control

[79]. Concretely, at every timestep 𝑡, the diffusion model takes in the previous 𝑇𝑜 timesteps

of observations 𝑂𝑡 and returns a sequence of actions of size 𝑇𝑝 . From this sequence, the

first 𝑇𝑎 actions are actually applied to the environment. [74] claim that the use of sequences

of observations and the application of the receding horizon principle encourages temporal

consistency in actions as the next set of actions is always conditioned on the previous observation

sequence. The conditioning of model outputs is naturally facilitated by diffusion models and

the FiLM [80] layer is used to compute conditioned latent space samples of inputs from which

the model learns 𝑝(𝑎𝑡 |𝑂𝑡). Once a diffusion model is trained, action sequences are generated

by 𝐾 steps of inference at each environment timestep 𝑡. The denoising update at each inference

step is

𝑎𝑘−1

𝑡 = 𝛼(𝑎𝑘𝑡 − 𝛾𝜖𝜃(𝑂𝑡 , 𝑎
𝑘
𝑡 , 𝑘) + 𝒩(0, 𝜎2𝐼))

The paper presents varied experiments on both real and simulated environments to show that

diffusion policy can learn multimodal action distributions better than other state-of-the-art

methods, and is capable oh high-dimensional representation learning (predicting sequences of

actions rather than single actions). They also show detailed comparisons of neural network

architectures like CNNs and Transformers and propose general guidelines for visual encoder

modelling. Diffusion policy is compared against Implicit Behaviour Cloning [81], a general
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procedure to learn an energy function and then minimise this via a variety of procedures.

Being an EBM, implicit behaviour cloning in theory must also possess the same advantages as

diffusion. However, through empirical results, comparisons of learning curves, and theoretical

argumentation, [74] show that using diffusion models leads to substantially more stable

training than IBC. They argue that the main reason for the stability of diffusion policy is because

diffusion models avoid the computation of the normalisation constant 𝑍𝜃 – something that the

energy-based training of IBC approximates through a sampling process.

4.7. SE(3) Diffusion Fields
[82] present a diffusion-based procedure to learn smooth cost functions for combined grasp and

motion optimisation for tasks in robotic manipulation. The smoothness of a cost function refers

to the ability to compute informative gradients for all points, from which a downstream motion

optimisation problem can be solved. The main contributions of this work are to first present

a modification to diffusion models that enables their use in the SE(3) lie group (as opposed

to Euclidean space) and secondly to use this model to learn cost function for downstream

optimisation tasks like 6-degree-of-freedom grasping. The learnt cost functions can also be

combined with additional optimisation objectives due to the composability (section 2.4) offered

by diffusion models. While the changes made to enable the use of diffusion models in the SE(3)

lie group are out of scope for this report, it is useful to note that [82] formulate the diffusion

model as an EBM to return energies as costs. The gradient of this energy w.r.t the input sample

is then used to explicitly compute the denoising score which is used within a denoising score

matching objective that they modify for SE(3). This two-part formulation of diffusion leads to

an intuitive application of diffusion models as

1. Techniques for learning to denoise an input and thereby facilitating downstream sample

generation via Langevin MCMC

2. Techniques for learning functions that are representative of the “quality" of an input and

thereby find use as optimisation targets

4.8. Neural Density Imitation (NDI)
The section on GAIL (section 4.1) discusses how [2] define the policy in terms of its occupancy

measure. The occupancy measure 𝜌𝜋 is the distribution of state-action pairs induced by a

policy. GAIL is an imitation learning framework that aims to match the occupancy measures

of the expert and imitator policies via an adversarial training procedure, thereby learning an

imitator policy that performs similarly to the expert.

Neural Density Imitation [83] is an imitation learning framework that uses the same idea but

substitutes the adversarial objective with a non-adversarial one that provably maximises (a

lower bound of) the reverse KL divergence. [83] reason that adversarial imitation learning

suffers from training instability and poor convergence due to the various issues of the alternating

min-max optimisation (section 2.2.1). They argue that adversarial imitation learning further
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suffers because the generator (learnt policy) is updated via high-variance performance estimates

that are obtained from rollouts in simulation.

Formally, the occupancy measure is defined as a function of the parameterised policy 𝜋𝜃, and

𝑝𝜃,𝑡:𝑡+𝑘 , the joint distribution of state trajectories {𝑠𝑡 , 𝑠𝑡+1 , ..., 𝑠𝑡+𝑘}. Intuitively, it captures the

frequency of visiting (𝑠, 𝑎) if 𝜋𝜃 is run infinitely.

𝜌𝜋𝜃 (𝑠, 𝑎) =
∞∑
𝑡=0

𝛾𝑡𝑝𝜃,𝑡(𝑠)𝜋𝜃(𝑠, 𝑎)

In general, imitation learning minimises the divergence between the expert and imitator

occupancy measures. [83] show that the reverse KL divergence is in turn dependent on the

entropy of a policy, a term that ensures exploration (occupancy measure diversity). While GAIL

and other adversarial methods aim to minimise 𝐾𝐿(𝜌𝜋𝐸 | |𝜌𝜋𝜃 ) (or other divergence measures

like the JS divergence), NDI uses a non-adversarial objective. The two main challenges that

[83] address are

1. Since the expert policy is not explicitly known, 𝜌𝜋𝐸 needs to be estimated from samples

from the demonstration dataset. They use energy-based models for this. They propose

to learn an energy-based model 𝑞𝜙(𝑠, 𝑎) to approximate 𝜌𝜋𝐸 and argue that EBMs are

appropriate since the reverse KL divergence is sufficiently minimised by unnormalised

density estimates of the policy’s occupancy measure (policy optimality is invariant to

a constant change in the reward function). Hence, score-matching is used to directly

estimate (𝑍 is a non-factor due to the definition of the score section 2.3)

𝑞𝜙(𝑠, 𝑎) =
exp (−𝐸𝜙(𝑠, 𝑎))

𝑍

2. Using non-adversarial objectives to maximise the entropy of the implicitly defined imitator

policy. For this, they use maximum occupancy entropy RL (for entropy regularisation)

[84], [85] with the reward function defined from the estimated policy occupancy measure

log 𝑞𝜙(𝑠, 𝑎) + 𝑚𝑖𝑠𝑐..

4.9. Discussion: What Can We Learn?
Chapter 4 can be split into two halves, imitation learning algorithms that (i) derive from

generative adversarial networks (section 4.1 - section 4.5) and (ii) derive from EBMs and

particularly diffusion models (section 4.6 - section 4.8). The goal of this section is to briefly

summarise their contributions, and highlight their relative strengths and weaknesses. Table 4.1

presents a comparison of these algorithms based on their technical characteristics.
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Table 4.1: A comparison of different imitation learning methods that use generative modelling

Features Underlying Generative Model Required Data Modality Learnt Function
IL Algorithm
GAIL GAN s-a pairs Implicitly learnt reward fn. + policy

GAIfO GAN s-s’ pairs Implicitly learnt reward fn. + policy

AIRL GAN s-a pairs Explicitly learnt reward fn. + policy

AMP GAN s-s’ pairs Implicitly learnt reward fn. + policy

CALM GAN s-s’ pairs Implicitly learnt reward fn. + low-level/high-level policy

Diffusion Policy Diffusion s-a pairs Policy

SE(3) Diffusion EBM + Score Matching grasp poses Reward fn. as learnt energy function + policy

NDI EBM + Score Matching s-a pairs Reward fn. as energy function of occupancy measure + policy

Before diving into a detailed technical analysis of each of these algorithms, it is important

to first identify the desired features of an imitation learning algorithm. The ideal generative

modelling based IL algorithm

1. Has stable training characteristics

2. Is capable of learning diverse, multi-modal expert distributions or a policy that depicts

multi-modal behaviour

3. Is admissible to the process of conditioning (thereby allowing some flexibility over the

features of the generated motion)

4. Learns a smooth distribution that can provide informative gradients at all points in the

sample space

5. Operates with partially observable demonstrations

Algorithms like GAIL, GAIfO, AMP, and CALM have shown markedly good empirical

performance. It can be argued that Adversarial Motion Priors (AMP) is the best from this

set because of the combination of learnt “style" rewards with goal-conditioned RL rewards

obtained from the environment. This allows the agent to mimic the style of the expert motion

while still separately optimising the goals implied by the environment’s reward function. In

comparison to CALM, which also uses a very similar procedure, AMP is arguably better

as it does not need to learn two independent policies which are then connected by another

user-configured finite state machine. Finally, AMP also uses state-only demonstrations and is

hence easier to apply in the real world.

Unfortunately, most of the GAN-derived algorithms (including AMP) fail to satisfy the

requirements discussed above. The simultaneous min-max optimisation in these algorithms

has been studied in detail in several past studies [35], [48]–[50] and is known to be quite

unstable. The policy (generator) update in these algorithms suffers further instability as it

requires the estimation of the performance measure by the computation of an expectation over

complete trajectories – a high-variance process due to the inherent stochasticity of environments

and the inability of the expert dataset to cover all possible trajectories in the trajectory space.

The GAN-like optimisation objective also suffers from issues like mode-dropping that render

the learnt distributions inadequate at generating diverse samples. It is further inadmissible

to conditioning. When used as a reward function, the non-smooth discriminator also fails
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to provide informative gradients from which a policy could be learnt. While AIRL does

outperform GAIL in transfer learning scenarios, avoids some of the instability by using singular

state-action pairs, and has a discriminator with a known functional form, it still uses the

GAN-like training objective. AIRL is hence prone to mode-dropping and instability arising

from the simultaneous min-max optimisation. GAIL and AIRL also require the actions taken

by the expert and are restricted in their practical applicability.

In contrast, the energy-based density estimation in algorithms like Diffusion Policy, NDI,

and SE(3)-Diffusion sidesteps the issues of instability and restricted output modality. It is

also naturally admissible to conditioning on features that affect sample characteristics. More

importantly, energy functions are smooth in the sample space. When used as reward functions

they can provide informative gradients based on which a policy can be optimised. It is

important to highlight that although Diffusion Policy uses complete trajectories of expert

demonstrations (and subsequently also predicts a sequence of actions), it is not prone to

instability arising from the variance in trajectories. This is because Diffusion Policy is a one-shot

approach and does not involve subsequent reinforcement learning in the loop to optimise a

policy. NDI avoids this kind of instability by working with single state-action-next state pairs

instead of trajectories.

However, both Diffusion Policy and NDI require the expert’s actions and are somewhat

restricted in their practical applicability. Diffusion Policy can also be seen as a generative

version of behaviour cloning as it aims to directly capture the distribution of expert trajectories

and produces action sequences as a function of observation history (conditioning the diffusion

process on observations). Under this interpretation, it can be argued that Diffusion Policy also

suffers from the correspondence problem (section 3.2). Even though diffusion can generate

diverse samples and the receding horizon control used in Diffusion Policy ensures some

degree of temporal consistency, Diffusion Policy might still fail to reliably replicate the expert.

The main challenge might be to learn corrective behaviour (section 3.1.1) once the agent has

already slightly deviated from the trajectory recommended by the expert policy. This could be

worsened if the demonstration distribution is not the same as the distribution of trajectories

encountered by the agent.

In conclusion, this chapter performs a theoretical and practical comparison of several state-of-

the-art imitation learning algorithms that employ generative modelling. From this, it appears

that there is a mixed set of benefits and drawbacks to these methods and a single algorithm

cannot claim to dominate others. A combination of the beneficial features of algorithms

like Adversarial Motion Priors (partial observability, and reward combining) and Neural

Density Imitation (energy-based reward learning and using individual s-a pairs instead of

trajectories) might lead to a better imitation learning algorithm that does supersede the current

state-of-the-art.



5
Conclusions & Future Work

This review explores the current state-of-the-art at the intersection of imitation learning and

generative machine learning. It starts with an explanation of some fundamental concepts in

statistical machine learning (section 1.3), discussing frameworks like reinforcement learning

(RL), popular RL methods, and other gradient-free techniques commonly seen in the literature.

The main focus of this review begins with an explanation of generative modelling (chapter 2) and

the two commonly seen types of modelling frameworks – likelihood-based and implicit. The

characteristics of these two techniques are compared and some challenges like the tractability

of the normalising constant are noted. This is followed by a detailed analysis of generative

adversarial networks (GANs) and their problems such as training instability, mode-dropping,

conditioning difficulties, and non-smoothness. The pertinence of these technical challenges

to the field of imitation learning is also discussed. The discussion then moves on to energy-

based models (EBMs) – an alternative approach to generative modelling. We review the

theoretical background to EBMs, the benefits of modelling probability distributions through

the unnormalised negative log probability, and the definition of the score. Further, techniques

like score-matching and Langevin MCMC are discussed. Finally, we discuss diffusion models

that can be viewed as a combination of score-based EBMs and Langevin MCMC. This is

followed by a detailed comparison of the benefits of EBMs and some of the issues of GANs

(and adversarial imitation learning) that were previously highlighted.

The discussion then moves on the imitation learning (IL) (chapter 3). We explain the intuition

and reasoning behind the idea of leveraging expert demonstrations and then pose imitation

learning as the problem of minimising the divergence between the learnt and expert probability

distributions. Like the previous chapter, the two main families of imitation learning algorithms

– behaviour cloning (BC) and inverse reinforcement learning (IRL) – are introduced and some

challenges of BC are noted. The rest of this report focuses primarily on IRL. We then introduce

some practical challenges in imitation learning and argue about the necessity of being compliant
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with partially observable demonstrations. Having seen both generative modelling and IL, we

then compare the similarity in their objectives (matching a learnt distribution to another from

which i.i.d samples are available) and discuss the benefits of combining generative modelling

and imitation learning.

Finally, the review presents some relevant works from recent literature (chapter 4) that

achieve this. We review a variety of methods that use both GANs and EBMs within their IL

framework and explain their theoretical background and claimed benefits. We then contrast

their advantages and drawbacks and conclude that a single algorithm can not be shown to

confidently dominate others. This leads to a proposal for a new algorithm that combines the

best features of some of these methods.

To conclude, we look back at the research questions posed in section 1.1. Based on the

discussions and analysis in the previous chapters, it can be argued that energy-based models

such as diffusion models can indeed have a substantial impact on the current state-of-the-art

generative imitation learning algorithms. The improvements could primarily come in the

form of better stability and expressiveness, and smoother reward functions leading to faster

(and potentially better) policy learning. The review also identifies some desirable features

such as operation under partial observability and the use of entropy regularisation, that might

improve the practical applicability of these methods. Considering the findings of this review,

the following research direction is recommended for exploration via a thesis.

1. Propose a new generative imitation learning algorithm based on EBMs/diffusion. The

use of EBMs ensures training stability and multi-modality. These features improve the

learnt reward functions that in turn improve the policies learnt by the new algorithm.

2. Pose a theoretically sound reward formulation as a function of the learnt energy. Given

the smoothness of the learnt energy function, this would allow the computation of

informative gradients for optimising the policy. Can the energy function be seen as the

unnormalised log probability of the occupancy measure of the policy [83]? Does using

the occupancy measure as a reward function capture the motivations of the expert?

3. Study the difference between directly optimising the reward (perhaps with PPO/TRPO)

and using additional exploration-inducing methods like maximum occupancy entropy

with reward optimisation.

4. Ensure that the proposed algorithm operates under partial observability (given only

a trajectory of state transition pairs). Since it is difficult to get accurate action data (as

well as physical state information like forces and accelerations) in expert demonstrations

of contact-rich tasks, the ability to work in such conditions is a crucial feature for the

proposed algorithm.

5. Compare the performance of the proposed algorithm against baselines such as AMP,

GAIL, NDI, and Diffusion Policy [2], [3], [74], [83]. Is there a performance reduction

compared to algorithms that also have access to the expert’s actions?
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The field of imitation learning seems to be at a promising phase, given the large number of

papers in recent literature. The rapid rise in generative modelling aided robotics research

surely points towards exciting avenues for the use of highly skilled robots in all kinds of new

areas. This literature review and the following thesis aim to contribute towards robots that

might someday achieve the same level of dextrous manipulation that currently only has a place

in science fiction.
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